SFML/test/src/Vector2.cpp

223 lines
5.6 KiB
C++
Raw Normal View History

#include <SFML/System/Vector2.hpp>
#include <catch.hpp>
// Use sf::Vector2i for tests. Test coverage is given, as there are no template specializations.
SCENARIO("Constructing sf::Vector2")
{
WHEN("default constructor is used")
{
sf::Vector2i vector;
THEN("x and y are 0")
{
CHECK(vector.x == 0);
CHECK(vector.y == 0);
}
}
WHEN("x, y constructor is used")
{
sf::Vector2i vector(1, 2);
THEN("x and y are set accordingly")
{
CHECK(vector.x == 1);
CHECK(vector.y == 2);
}
}
GIVEN("a vector of a different type")
{
sf::Vector2f sourceVector(1.0f, 2.0f);
WHEN("a vector is constructed from the another vector")
{
sf::Vector2i vector(sourceVector);
THEN("x and y are equal to the source vector's elements")
{
CHECK(vector.x == static_cast<int>(sourceVector.x));
CHECK(vector.y == static_cast<int>(sourceVector.y));
}
}
}
}
SCENARIO("sf::Vector2 algebra")
{
GIVEN("a vector with x and y != 0")
{
sf::Vector2i vector(1, 2);
WHEN("the vector is negated")
{
sf::Vector2i negatedVector = -vector;
THEN("x and y are negated")
{
CHECK(negatedVector.x == -1);
CHECK(negatedVector.y == -2);
}
}
}
GIVEN("two different vectors with x and y != 0")
{
sf::Vector2i firstVector(2, 5);
sf::Vector2i secondVector(8, 3);
WHEN("one vector is increased by another one")
{
firstVector += secondVector;
THEN("the first operand's x and y are increased by the second one's")
{
CHECK(firstVector.x == 10);
CHECK(firstVector.y == 8);
}
}
WHEN("one vector is decreased by another one")
{
firstVector -= secondVector;
THEN("the first operand's x and y are decreased by the second one's")
{
CHECK(firstVector.x == -6);
CHECK(firstVector.y == 2);
}
}
WHEN("two vectors are summed")
{
sf::Vector2i result = firstVector + secondVector;
THEN("the result vector's x and y are the sum of the vectors' x and y")
{
CHECK(result.x == 10);
CHECK(result.y == 8);
}
}
WHEN("one vector is subtracted from another one")
{
sf::Vector2i result = firstVector - secondVector;
THEN("the result vector's x and y are the difference of the vectors' x and y")
{
CHECK(result.x == -6);
CHECK(result.y == 2);
}
}
}
GIVEN("a vector with x and y != 0 and a scalar value")
{
sf::Vector2i vector(26, 12);
int scalar(2);
WHEN("a vector is multiplied by a scalar")
{
sf::Vector2i result = vector * scalar;
THEN("the result vector's x and y are the product with the scalar")
{
CHECK(result.x == 52);
CHECK(result.y == 24);
}
}
WHEN("a scalar is multiplied by a vector")
{
sf::Vector2i result = scalar * vector ;
THEN("the result vector's x and y are the product with the scalar")
{
CHECK(result.x == 52);
CHECK(result.y == 24);
}
}
WHEN("a vector is multiplied by a scalar in itself")
{
vector *= scalar;
THEN("the vector's x and y are the product with the scalar")
{
CHECK(vector.x == 52);
CHECK(vector.y == 24);
}
}
WHEN("a vector is divided by a scalar")
{
sf::Vector2i result = vector / scalar;
THEN("the result vector's x and y are the division with the scalar")
{
CHECK(result.x == 13);
CHECK(result.y == 6);
}
}
WHEN("a vector is divided by a scalar in itself")
{
vector /= scalar;
THEN("the vector's x and y are the division with the scalar")
{
CHECK(vector.x == 13);
CHECK(vector.y == 6);
}
}
}
GIVEN("3 vectors, where two are equal")
{
sf::Vector2i firstEqualVector(1, 5);
sf::Vector2i secondEqualVector(1, 5);
sf::Vector2i differentVector(6, 9);
WHEN("equal vectors are tested for equality")
{
bool equal = (firstEqualVector == secondEqualVector);
THEN("the result is true")
{
CHECK(equal == true);
}
}
WHEN("different vectors are tested for equality")
{
bool equal = (firstEqualVector == differentVector);
THEN("the result is false")
{
CHECK(equal == false);
}
}
WHEN("equal vectors are tested for inequality")
{
bool equal = (firstEqualVector != secondEqualVector);
THEN("the result is false")
{
CHECK(equal == false);
}
}
WHEN("different vectors are tested for inequality")
{
bool equal = (firstEqualVector != differentVector);
THEN("the result is true")
{
CHECK(equal == true);
}
}
}
}