Add Vector2 extension methods (inspired from Thor)

Adds vector algebra functionality as member functions for Vector2<T>, with some methods limited to floating-point T.
Also adds UnitX and UnitY constants for the two axis unit vectors.
This commit is contained in:
Jan Haller 2022-01-25 22:25:52 +01:00 committed by Vittorio Romeo
parent fab2c93d7a
commit 70eeba5067
2 changed files with 303 additions and 32 deletions

View File

@ -25,11 +25,16 @@
#ifndef SFML_VECTOR2_HPP
#define SFML_VECTOR2_HPP
#include <SFML/System/Angle.hpp>
#include <cassert>
#include <cmath>
#include <type_traits>
namespace sf
{
////////////////////////////////////////////////////////////
/// \brief Utility template class for manipulating
/// \brief Class template for manipulating
/// 2-dimensional vectors
///
////////////////////////////////////////////////////////////
@ -69,13 +74,142 @@ public:
template <typename U>
constexpr explicit Vector2(const Vector2<U>& vector);
////////////////////////////////////////////////////////////
/// \brief Length of the vector <i><b>(floating-point)</b></i>.
///
/// If you are not interested in the actual length, but only in comparisons, consider using lengthSq().
///
////////////////////////////////////////////////////////////
T length() const;
////////////////////////////////////////////////////////////
/// \brief Square of vector's length.
///
/// Suitable for comparisons, more efficient than length().
///
////////////////////////////////////////////////////////////
constexpr T lengthSq() const;
////////////////////////////////////////////////////////////
/// \brief Vector with same direction but length 1 <i><b>(floating-point)</b></i>.
///
/// \pre \c *this is no zero vector.
///
////////////////////////////////////////////////////////////
[[nodiscard]] Vector2 normalized() const;
////////////////////////////////////////////////////////////
/// \brief Signed angle from \c *this to \c rhs <i><b>(floating-point)</b></i>.
///
/// \return The smallest angle which rotates \c *this in positive
/// or negative direction, until it has the same direction as \c rhs.
/// The result has a sign and lies in the range [-180, 180°).
/// \pre Neither \c *this nor \c rhs is a zero vector.
///
////////////////////////////////////////////////////////////
Angle angleTo(const Vector2& rhs) const;
////////////////////////////////////////////////////////////
/// \brief Signed angle from +X or (1,0) vector <i><b>(floating-point)</b></i>.
///
/// For example, the vector (1,0) corresponds to 0 degrees, (0,1) corresponds to 90 degrees.
///
/// \return Angle in the range [-180°, 180°).
/// \pre This vector is no zero vector.
///
////////////////////////////////////////////////////////////
Angle angle() const;
////////////////////////////////////////////////////////////
/// \brief Rotate by angle \c phi <i><b>(floating-point)</b></i>.
///
/// Returns a vector with same length but different direction.
///
/// In SFML's default coordinate system with +X right and +Y down,
/// this amounts to a clockwise rotation by \c phi.
///
////////////////////////////////////////////////////////////
[[nodiscard]] Vector2 rotatedBy(Angle phi) const;
////////////////////////////////////////////////////////////
/// \brief Projection of this vector onto \c axis <i><b>(floating-point)</b></i>.
///
/// \param axis Vector being projected onto. Need not be normalized.
/// \pre \c axis must not have length zero.
///
////////////////////////////////////////////////////////////
[[nodiscard]] constexpr Vector2 projectedOnto(const Vector2& axis) const;
////////////////////////////////////////////////////////////
/// \brief Returns a perpendicular vector.
///
/// Returns \c *this rotated by +90 degrees; (x,y) becomes (-y,x).
/// For example, the vector (1,0) is transformed to (0,1).
///
/// In SFML's default coordinate system with +X right and +Y down,
/// this amounts to a clockwise rotation.
///
////////////////////////////////////////////////////////////
constexpr Vector2 perpendicular() const;
////////////////////////////////////////////////////////////
/// \brief Dot product of two 2D vectors.
///
////////////////////////////////////////////////////////////
constexpr T dot(const Vector2& rhs) const;
////////////////////////////////////////////////////////////
/// \brief Z component of the cross product of two 2D vectors.
///
/// Treats the operands as 3D vectors, computes their cross product
/// and returns the result's Z component (X and Y components are always zero).
///
////////////////////////////////////////////////////////////
constexpr T cross(const Vector2& rhs) const;
////////////////////////////////////////////////////////////
/// \brief Component-wise multiplication of \c *this and \c rhs.
///
/// Computes <tt>(lhs.x*rhs.x, lhs.y*rhs.y)</tt>.
///
/// Scaling is the most common use case for component-wise multiplication/division.
/// This operation is also known as the Hadamard or Schur product.
///
////////////////////////////////////////////////////////////
constexpr Vector2 cwiseMul(const Vector2& rhs) const;
////////////////////////////////////////////////////////////
/// \brief Component-wise division of \c *this and \c rhs.
///
/// Computes <tt>(lhs.x/rhs.x, lhs.y/rhs.y)</tt>.
///
/// Scaling is the most common use case for component-wise multiplication/division.
///
/// \pre Neither component of \c rhs is zero.
///
////////////////////////////////////////////////////////////
constexpr Vector2 cwiseDiv(const Vector2& rhs) const;
////////////////////////////////////////////////////////////
// Member data
////////////////////////////////////////////////////////////
T x; //!< X coordinate of the vector
T y; //!< Y coordinate of the vector
////////////////////////////////////////////////////////////
// Static member data
////////////////////////////////////////////////////////////
static const Vector2 UnitX; //!< The X unit vector (1, 0), usually facing right
static const Vector2 UnitY; //!< The Y unit vector (0, 1), usually facing down
};
// Define the most common types
using Vector2i = Vector2<int>;
using Vector2u = Vector2<unsigned int>;
using Vector2f = Vector2<float>;
////////////////////////////////////////////////////////////
/// \relates Vector2
/// \brief Overload of unary operator -
@ -93,12 +227,12 @@ template <typename T>
/// \brief Overload of binary operator +=
///
/// This operator performs a memberwise addition of both vectors,
/// and assigns the result to \a left.
/// and assigns the result to \c left.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Reference to \a left
/// \return Reference to \c left
///
////////////////////////////////////////////////////////////
template <typename T>
@ -109,12 +243,12 @@ constexpr Vector2<T>& operator +=(Vector2<T>& left, const Vector2<T>& right);
/// \brief Overload of binary operator -=
///
/// This operator performs a memberwise subtraction of both vectors,
/// and assigns the result to \a left.
/// and assigns the result to \c left.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return Reference to \a left
/// \return Reference to \c left
///
////////////////////////////////////////////////////////////
template <typename T>
@ -153,7 +287,7 @@ template <typename T>
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Memberwise multiplication by \a right
/// \return Memberwise multiplication by \c right
///
////////////////////////////////////////////////////////////
template <typename T>
@ -166,7 +300,7 @@ template <typename T>
/// \param left Left operand (a scalar value)
/// \param right Right operand (a vector)
///
/// \return Memberwise multiplication by \a left
/// \return Memberwise multiplication by \c left
///
////////////////////////////////////////////////////////////
template <typename T>
@ -176,13 +310,13 @@ template <typename T>
/// \relates Vector2
/// \brief Overload of binary operator *=
///
/// This operator performs a memberwise multiplication by \a right,
/// and assigns the result to \a left.
/// This operator performs a memberwise multiplication by \c right,
/// and assigns the result to \c left.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Reference to \a left
/// \return Reference to \c left
///
////////////////////////////////////////////////////////////
template <typename T>
@ -195,7 +329,7 @@ constexpr Vector2<T>& operator *=(Vector2<T>& left, T right);
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Memberwise division by \a right
/// \return Memberwise division by \c right
///
////////////////////////////////////////////////////////////
template <typename T>
@ -205,13 +339,13 @@ template <typename T>
/// \relates Vector2
/// \brief Overload of binary operator /=
///
/// This operator performs a memberwise division by \a right,
/// and assigns the result to \a left.
/// This operator performs a memberwise division by \c right,
/// and assigns the result to \c left.
///
/// \param left Left operand (a vector)
/// \param right Right operand (a scalar value)
///
/// \return Reference to \a left
/// \return Reference to \c left
///
////////////////////////////////////////////////////////////
template <typename T>
@ -226,7 +360,7 @@ constexpr Vector2<T>& operator /=(Vector2<T>& left, T right);
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return True if \a left is equal to \a right
/// \return True if \c left is equal to \c right
///
////////////////////////////////////////////////////////////
template <typename T>
@ -241,7 +375,7 @@ template <typename T>
/// \param left Left operand (a vector)
/// \param right Right operand (a vector)
///
/// \return True if \a left is not equal to \a right
/// \return True if \c left is not equal to \c right
///
////////////////////////////////////////////////////////////
template <typename T>
@ -249,11 +383,6 @@ template <typename T>
#include <SFML/System/Vector2.inl>
// Define the most common types
using Vector2i = Vector2<int>;
using Vector2u = Vector2<unsigned int>;
using Vector2f = Vector2<float>;
} // namespace sf
@ -267,11 +396,19 @@ using Vector2f = Vector2<float>;
/// sf::Vector2 is a simple class that defines a mathematical
/// vector with two coordinates (x and y). It can be used to
/// represent anything that has two dimensions: a size, a point,
/// a velocity, etc.
/// a velocity, a scale, etc.
///
/// The API provides basic arithmetic (addition, subtraction, scale), as
/// well as more advanced geometric operations, such as dot/cross products,
/// length and angle computations, projections, rotations, etc.
///
/// The template parameter T is the type of the coordinates. It
/// can be any type that supports arithmetic operations (+, -, /, *)
/// and comparisons (==, !=), for example int or float.
/// Note that some operations are only meaningful for vectors where T is
/// a floating point type (e.g. float or double), often because
/// results cannot be represented accurately with integers.
/// The method documentation mentions "(floating-point)" in those cases.
///
/// You generally don't have to care about the templated form (sf::Vector2<T>),
/// the most common specializations have special type aliases:
@ -279,19 +416,20 @@ using Vector2f = Vector2<float>;
/// \li sf::Vector2<int> is sf::Vector2i
/// \li sf::Vector2<unsigned int> is sf::Vector2u
///
/// The sf::Vector2 class has a small and simple interface, its x and y members
/// can be accessed directly (there are no accessors like setX(), getX()) and it
/// contains no mathematical function like dot product, cross product, length, etc.
/// The sf::Vector2 class has a simple interface, its x and y members
/// can be accessed directly (there are no accessors like setX(), getX()).
///
/// Usage example:
/// \code
/// sf::Vector2f v1(16.5f, 24.f);
/// v1.x = 18.2f;
/// float y = v1.y;
/// sf::Vector2f v(16.5f, 24.f);
/// v.x = 18.2f;
/// float y = v.y;
///
/// sf::Vector2f v2 = v1 * 5.f;
/// sf::Vector2f v3;
/// v3 = v1 + v2;
/// sf::Vector2f w = v * 5.f;
/// sf::Vector2f u;
/// u = v + w;
///
/// float s = v.dot(w);
///
/// bool different = (v2 != v3);
/// \endcode

View File

@ -53,6 +53,128 @@ y(static_cast<T>(vector.y))
}
////////////////////////////////////////////////////////////
template <typename T>
T Vector2<T>::length() const
{
static_assert(std::is_floating_point_v<T>, "Vector2::length() is only supported for floating point types");
return std::hypot(x, y);
}
////////////////////////////////////////////////////////////
template <typename T>
constexpr T Vector2<T>::lengthSq() const
{
return this->dot(*this);
}
////////////////////////////////////////////////////////////
template <typename T>
Vector2<T> Vector2<T>::normalized() const
{
static_assert(std::is_floating_point_v<T>, "Vector2::normalized() is only supported for floating point types");
assert(*this != Vector2<T>());
return (*this) / length();
}
////////////////////////////////////////////////////////////
template <typename T>
Angle Vector2<T>::angleTo(const Vector2<T>& rhs) const
{
static_assert(std::is_floating_point_v<T>, "Vector2::angleTo() is only supported for floating point types");
assert(*this != Vector2<T>());
assert(rhs != Vector2<T>());
return radians(std::atan2(this->cross(rhs), this->dot(rhs)));
}
////////////////////////////////////////////////////////////
template <typename T>
Angle Vector2<T>::angle() const
{
static_assert(std::is_floating_point_v<T>, "Vector2::angle() is only supported for floating point types");
assert(*this != Vector2<T>());
return radians(std::atan2(y, x));
}
////////////////////////////////////////////////////////////
template <typename T>
Vector2<T> Vector2<T>::rotatedBy(Angle angle) const
{
static_assert(std::is_floating_point_v<T>, "Vector2::rotatedBy() is only supported for floating point types");
// No zero vector assert, because rotating a zero vector is well-defined (yields always itself)
T cos = std::cos(angle.asRadians());
T sin = std::sin(angle.asRadians());
// Don't manipulate x and y separately, otherwise they're overwritten too early
return Vector2<T>(
cos * x - sin * y,
sin * x + cos * y);
}
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector2<T> Vector2<T>::projectedOnto(const Vector2<T>& axis) const
{
static_assert(std::is_floating_point_v<T>, "Vector2::projectedOnto() is only supported for floating point types");
assert(axis != Vector2<T>());
return this->dot(axis) / axis.lengthSq() * axis;
}
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector2<T> Vector2<T>::perpendicular() const
{
return Vector2<T>(-y, x);
}
////////////////////////////////////////////////////////////
template <typename T>
constexpr T Vector2<T>::dot(const Vector2<T>& rhs) const
{
return x * rhs.x + y * rhs.y;
}
////////////////////////////////////////////////////////////
template <typename T>
constexpr T Vector2<T>::cross(const Vector2<T>& rhs) const
{
return x * rhs.y - y * rhs.x;
}
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector2<T> Vector2<T>::cwiseMul(const Vector2<T>& rhs) const
{
return Vector2<T>(x * rhs.x, y * rhs.y);
}
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector2<T> Vector2<T>::cwiseDiv(const Vector2<T>& rhs) const
{
assert(rhs.x != 0);
assert(rhs.y != 0);
return Vector2<T>(x / rhs.x, y / rhs.y);
}
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector2<T> operator -(const Vector2<T>& right)
@ -159,3 +281,14 @@ constexpr bool operator !=(const Vector2<T>& left, const Vector2<T>& right)
{
return (left.x != right.x) || (left.y != right.y);
}
////////////////////////////////////////////////////////////
// Static member data
////////////////////////////////////////////////////////////
template <typename T>
constexpr Vector2<T> Vector2<T>::UnitX(static_cast<T>(1), static_cast<T>(0));
template <typename T>
constexpr Vector2<T> Vector2<T>::UnitY(static_cast<T>(0), static_cast<T>(1));