Initial commit

This commit is contained in:
2021-10-10 14:39:17 +08:00
commit d25da95e1e
135 changed files with 19184 additions and 0 deletions

View File

@ -0,0 +1,53 @@
format elf64
section '.text' executable
; x64sysvcall int sysv_x64fastcall(void* addr, int numArgs, long args1, args2, args3, args4)
;
; Calls Microsoft x64 ABI functions under System V AMD64 ABI.
;
; This function can handle ONLY up to FOUR arguments.
; numArgs is in fact unused.
;
; Input: (void* rdi, int rsi, long rdx, rcx, r8, r9)
; Output: int rax
; Clobbers: flags
public sysv_x64fastcall
sysv_x64fastcall:
sub rsp, 4*8 ; reserve the 4*8 bytes of shadow space
; So, before we start, let's make a chart!
;
; | SysVx64 | MSx64 |
; ----+---------------+---------------+
; RAX | Return Value | Return Value |
; RBX | Callee Saved | Callee Saved |
; RCX | Argument 4 | Argument 1 |
; RDX | Argument 3 | Argument 2 |
; RSI | Argument 2 | Callee Saved |
; RDI | Argument 1 | Callee Saved |
; RBP | Callee Saved | Callee Saved |
; RSP | Stack Pointer | Stack Pointer |
; R8 | Argument 5 | Argument 3 |
; R9 | Argument 6 | Argument 4 |
; R10 | Caller Saved | Caller Saved |
; R11 | Caller Saved | Caller Saved |
; R12 | Callee Saved | Callee Saved |
; R13 | Callee Saved | Callee Saved |
; R14 | Callee Saved | Callee Saved |
; R15 | Callee Saved | Callee Saved |
;
; To sum up, all we need to do is:
; - RCX = RDX; RDX = RCX; and that's it!
; Other stuff correspond quite well actually.
mov rax, rcx
mov rcx, rdx
mov rdx, rax
call rdi
add rsp, 4*8 ; pop the shadow space
ret

View File

@ -0,0 +1,12 @@
// x64sysvcall int sysv_x64fastcall(void* addr, int numArgs, long args1, args2, args3, args4)
//
// Calls Microsoft x64 ABI functions under System V AMD64 ABI.
//
// This function can handle ONLY up to FOUR arguments.
// numArgs is in fact unused.
//
// Input: (void* rdi, int rsi, long rdx, rcx, r8, r9)
// Output: int rax
// Clobbers: flags
__attribute__((sysv_abi)) long sysv_x64fastcall(void *addr, int numArgs, long args1, long args2, long args3, long args4);

342
runtime/memcpy.c Normal file
View File

@ -0,0 +1,342 @@
/********************************************************************
** File: memcpy.c
**
** Copyright (C) 1999-2010 Daniel Vik
**
** This software is provided 'as-is', without any express or implied
** warranty. In no event will the authors be held liable for any
** damages arising from the use of this software.
** Permission is granted to anyone to use this software for any
** purpose, including commercial applications, and to alter it and
** redistribute it freely, subject to the following restrictions:
**
** 1. The origin of this software must not be misrepresented; you
** must not claim that you wrote the original software. If you
** use this software in a product, an acknowledgment in the
** use this software in a product, an acknowledgment in the
** product documentation would be appreciated but is not
** required.
**
** 2. Altered source versions must be plainly marked as such, and
** must not be misrepresented as being the original software.
**
** 3. This notice may not be removed or altered from any source
** distribution.
**
**
** Description: Implementation of the standard library function memcpy.
** This implementation of memcpy() is ANSI-C89 compatible.
**
** The following configuration options can be set:
**
** LITTLE_ENDIAN - Uses processor with little endian
** addressing. Default is big endian.
**
** PRE_INC_PTRS - Use pre increment of pointers.
** Default is post increment of
** pointers.
**
** INDEXED_COPY - Copying data using array indexing.
** Using this option, disables the
** PRE_INC_PTRS option.
**
** MEMCPY_64BIT - Compiles memcpy for 64 bit
** architectures
**
**
** Best Settings:
**
** Intel x86: LITTLE_ENDIAN and INDEXED_COPY
**
*******************************************************************/
/********************************************************************
** Configuration definitions.
*******************************************************************/
#define LITTLE_ENDIAN
#define INDEXED_COPY
#define MEMCPY_64BIT
/********************************************************************
** Includes for size_t definition
*******************************************************************/
#include <stddef.h>
/********************************************************************
** Typedefs
*******************************************************************/
typedef unsigned char UInt8;
typedef unsigned short UInt16;
typedef unsigned int UInt32;
#ifdef _WIN32
typedef unsigned __int64 UInt64;
#else
typedef unsigned long long UInt64;
#endif
#ifdef MEMCPY_64BIT
typedef UInt64 UIntN;
#define TYPE_WIDTH 8L
#else
typedef UInt32 UIntN;
#define TYPE_WIDTH 4L
#endif
/********************************************************************
** Remove definitions when INDEXED_COPY is defined.
*******************************************************************/
#if defined(INDEXED_COPY)
#if defined(PRE_INC_PTRS)
#undef PRE_INC_PTRS
#endif /*PRE_INC_PTRS*/
#endif /*INDEXED_COPY*/
/********************************************************************
** Definitions for pre and post increment of pointers.
*******************************************************************/
#if defined(PRE_INC_PTRS)
#define START_VAL(x) (x)--
#define INC_VAL(x) *++(x)
#define CAST_TO_U8(p, o) ((UInt8 *)p + o + TYPE_WIDTH)
#define WHILE_DEST_BREAK (TYPE_WIDTH - 1)
#define PRE_LOOP_ADJUST -(TYPE_WIDTH - 1)
#define PRE_SWITCH_ADJUST +1
#else /*PRE_INC_PTRS*/
#define START_VAL(x)
#define INC_VAL(x) *(x)++
#define CAST_TO_U8(p, o) ((UInt8 *)p + o)
#define WHILE_DEST_BREAK 0
#define PRE_LOOP_ADJUST
#define PRE_SWITCH_ADJUST
#endif /*PRE_INC_PTRS*/
/********************************************************************
** Definitions for endians
*******************************************************************/
#if defined(LITTLE_ENDIAN)
#define SHL >>
#define SHR <<
#else /* LITTLE_ENDIAN */
#define SHL <<
#define SHR >>
#endif /* LITTLE_ENDIAN */
/********************************************************************
** Macros for copying words of different alignment.
** Uses incremening pointers.
*******************************************************************/
#define CP_INCR() \
{ \
INC_VAL(dstN) = INC_VAL(srcN); \
}
#define CP_INCR_SH(shl, shr) \
{ \
dstWord = srcWord SHL shl; \
srcWord = INC_VAL(srcN); \
dstWord |= srcWord SHR shr; \
INC_VAL(dstN) = dstWord; \
}
/********************************************************************
** Macros for copying words of different alignment.
** Uses array indexes.
*******************************************************************/
#define CP_INDEX(idx) \
{ \
dstN[idx] = srcN[idx]; \
}
#define CP_INDEX_SH(x, shl, shr) \
{ \
dstWord = srcWord SHL shl; \
srcWord = srcN[x]; \
dstWord |= srcWord SHR shr; \
dstN[x] = dstWord; \
}
/********************************************************************
** Macros for copying words of different alignment.
** Uses incremening pointers or array indexes depending on
** configuration.
*******************************************************************/
#if defined(INDEXED_COPY)
#define CP(idx) CP_INDEX(idx)
#define CP_SH(idx, shl, shr) CP_INDEX_SH(idx, shl, shr)
#define INC_INDEX(p, o) ((p) += (o))
#else /* INDEXED_COPY */
#define CP(idx) CP_INCR()
#define CP_SH(idx, shl, shr) CP_INCR_SH(shl, shr)
#define INC_INDEX(p, o)
#endif /* INDEXED_COPY */
#define COPY_REMAINING(count) \
{ \
START_VAL(dst8); \
START_VAL(src8); \
\
switch (count) { \
case 7: INC_VAL(dst8) = INC_VAL(src8); \
case 6: INC_VAL(dst8) = INC_VAL(src8); \
case 5: INC_VAL(dst8) = INC_VAL(src8); \
case 4: INC_VAL(dst8) = INC_VAL(src8); \
case 3: INC_VAL(dst8) = INC_VAL(src8); \
case 2: INC_VAL(dst8) = INC_VAL(src8); \
case 1: INC_VAL(dst8) = INC_VAL(src8); \
case 0: \
default: break; \
} \
}
#define COPY_NO_SHIFT() \
{ \
UIntN *dstN = (UIntN *)(dst8 PRE_LOOP_ADJUST); \
UIntN *srcN = (UIntN *)(src8 PRE_LOOP_ADJUST); \
size_t length = count / TYPE_WIDTH; \
\
while (length & 7) { \
CP_INCR(); \
length--; \
} \
\
length /= 8; \
\
while (length--) { \
CP(0); \
CP(1); \
CP(2); \
CP(3); \
CP(4); \
CP(5); \
CP(6); \
CP(7); \
\
INC_INDEX(dstN, 8); \
INC_INDEX(srcN, 8); \
} \
\
src8 = CAST_TO_U8(srcN, 0); \
dst8 = CAST_TO_U8(dstN, 0); \
\
COPY_REMAINING(count &(TYPE_WIDTH - 1)); \
\
return dest; \
}
#define COPY_SHIFT(shift) \
{ \
UIntN *dstN = (UIntN *)((((UIntN)dst8)PRE_LOOP_ADJUST) & ~(TYPE_WIDTH - 1)); \
UIntN *srcN = (UIntN *)((((UIntN)src8)PRE_LOOP_ADJUST) & ~(TYPE_WIDTH - 1)); \
size_t length = count / TYPE_WIDTH; \
UIntN srcWord = INC_VAL(srcN); \
UIntN dstWord; \
\
while (length & 7) { \
CP_INCR_SH(8 * shift, 8 * (TYPE_WIDTH - shift)); \
length--; \
} \
\
length /= 8; \
\
while (length--) { \
CP_SH(0, 8 * shift, 8 * (TYPE_WIDTH - shift)); \
CP_SH(1, 8 * shift, 8 * (TYPE_WIDTH - shift)); \
CP_SH(2, 8 * shift, 8 * (TYPE_WIDTH - shift)); \
CP_SH(3, 8 * shift, 8 * (TYPE_WIDTH - shift)); \
CP_SH(4, 8 * shift, 8 * (TYPE_WIDTH - shift)); \
CP_SH(5, 8 * shift, 8 * (TYPE_WIDTH - shift)); \
CP_SH(6, 8 * shift, 8 * (TYPE_WIDTH - shift)); \
CP_SH(7, 8 * shift, 8 * (TYPE_WIDTH - shift)); \
\
INC_INDEX(dstN, 8); \
INC_INDEX(srcN, 8); \
} \
\
src8 = CAST_TO_U8(srcN, (shift - TYPE_WIDTH)); \
dst8 = CAST_TO_U8(dstN, 0); \
\
COPY_REMAINING(count &(TYPE_WIDTH - 1)); \
\
return dest; \
}
/********************************************************************
**
** void *memcpy(void *dest, const void *src, size_t count)
**
** Args: dest - pointer to destination buffer
** src - pointer to source buffer
** count - number of bytes to copy
**
** Return: A pointer to destination buffer
**
** Purpose: Copies count bytes from src to dest.
** No overlap check is performed.
**
*******************************************************************/
void *memcpy(void *dest, const void *src, size_t count) {
UInt8 *dst8 = (UInt8 *)dest;
UInt8 *src8 = (UInt8 *)src;
if (count < 8) {
COPY_REMAINING(count);
return dest;
}
START_VAL(dst8);
START_VAL(src8);
while (((UIntN)dst8 & (TYPE_WIDTH - 1)) != WHILE_DEST_BREAK) {
INC_VAL(dst8) = INC_VAL(src8);
count--;
}
switch ((((UIntN)src8)PRE_SWITCH_ADJUST) & (TYPE_WIDTH - 1)) {
case 0: COPY_NO_SHIFT(); break;
case 1: COPY_SHIFT(1); break;
case 2: COPY_SHIFT(2); break;
case 3: COPY_SHIFT(3); break;
#if TYPE_WIDTH > 4
case 4: COPY_SHIFT(4); break;
case 5: COPY_SHIFT(5); break;
case 6: COPY_SHIFT(6); break;
case 7: COPY_SHIFT(7); break;
#endif
}
}

64
runtime/memcpy.h Normal file
View File

@ -0,0 +1,64 @@
/********************************************************************
** File: memcpy.h
**
** Copyright (C) 2005 Daniel Vik
**
** This software is provided 'as-is', without any express or implied
** warranty. In no event will the authors be held liable for any
** damages arising from the use of this software.
** Permission is granted to anyone to use this software for any
** purpose, including commercial applications, and to alter it and
** redistribute it freely, subject to the following restrictions:
**
** 1. The origin of this software must not be misrepresented; you
** must not claim that you wrote the original software. If you
** use this software in a product, an acknowledgment in the
** use this software in a product, an acknowledgment in the
** product documentation would be appreciated but is not
** required.
**
** 2. Altered source versions must be plainly marked as such, and
** must not be misrepresented as being the original software.
**
** 3. This notice may not be removed or altered from any source
** distribution.
**
**
** Description: Implementation of the standard library function memcpy.
** This implementation of memcpy() is ANSI-C89 compatible.
**
*******************************************************************/
#pragma once
/********************************************************************
** Includes for size_t definition
*******************************************************************/
#include <stddef.h>
/********************************************************************
**
** void *memcpy(void *dest, const void *src, size_t count)
**
** Args: dest - pointer to destination buffer
** src - pointer to source buffer
** count - number of bytes to copy
**
** Return: A pointer to destination buffer
**
** Purpose: Copies count bytes from src to dest. No overlap check
** is performed.
**
*******************************************************************/
#ifdef __cplusplus
extern "C" {
#endif
void *memcpy(void *dest, const void *src, size_t count);
#ifdef __cplusplus
}
#endif

60
runtime/memset_memmove.S Normal file
View File

@ -0,0 +1,60 @@
format elf64
section '.text' executable
; x64fastcall void* memset(void* dest, int data, size_t count)
;
; Input: (void* rcx, int rdx, size_t r8)
; Output: void* rax
; Clobbers: r10, flags
public memset
memset:
mov rax, rcx
lea r10, [rcx+r8]
memset_loop:
mov byte[rcx], dl
inc rcx
cmp rcx, r10
jne memset_loop
ret
; x64fastcall void* memmove(void* dest, const void* src, size_t count)
;
; Input: (void* rcx, void* rdx, size_t r8)
; Output: void* rax
; Clobbers: r9, r10, r11, flags
public memmove
memmove:
mov rax, rcx
lea r10, [rcx+r8] ; past-the-end for *dest
lea r11, [rdx+r8] ; past-the-end for *src
cmp rdx, rcx
je memmove_end ; return if move buffers are the same
jl memmove_back ; *src < *dest: overlaps, copy backward
memmove_front: ; *src > *dest: overlaps, copy forward
mov r9b, byte[rdx]
mov byte[rcx], r9b
inc rcx
inc rdx
cmp rcx, r10
jne memmove_front
jmp memmove_end
memmove_back:
dec r10
dec r11
mov r9b, byte[r11]
mov byte[r10], r9b
cmp rcx, r10
jne memmove_back
memmove_end:
ret

View File

@ -0,0 +1,13 @@
format elf64
section '.text' executable
; whatevercall void __Panic_HaltSystem();
;
; Panic_HaltSystem halts the system by an infinite loop calling the HLT instruction.
public __Panic_HaltSystem
__Panic_HaltSystem:
hlt
jmp __Panic_HaltSystem

49
runtime/panic_assert.h Normal file
View File

@ -0,0 +1,49 @@
#pragma once
#ifndef HELOS
#include <assert.h>
#else
#include "../main.h"
#include "stdio.h"
#include "printf.h"
#ifdef __cplusplus
extern "C" {
#endif
#define assert(expr) \
do { \
if (!(expr)) \
Panicf("Assertion failed: (" __FILE__ ":%d[%s]), Expression: %s", __LINE__, __func__, #expr); \
} while (0)
// defined in assembly
noreturn void __Panic_HaltSystem();
// Panic() aborts the system after printing the message and some other information.
noreturn inline static void Panic(const char *message) {
io_Printf("Panic: %s\n", message);
__Panic_HaltSystem();
}
// Panicf() aborts the system after printing the message using vsnprintf.
noreturn inline static void Panicf(const char *fmt, ...) {
va_list args;
va_start(args, fmt);
int ret = vsnprintf(Buffer, HELOS_BUFFER_SIZE, fmt, args);
va_end(args);
io_Printf("Panic: %s\n", Buffer);
__Panic_HaltSystem();
}
#ifdef __cplusplus
}
#endif
#endif // HELOS

914
runtime/printf.c Normal file
View File

@ -0,0 +1,914 @@
///////////////////////////////////////////////////////////////////////////////
// \author (c) Marco Paland (info@paland.com)
// 2014-2019, PALANDesign Hannover, Germany
//
// \license The MIT License (MIT)
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
// \brief Tiny printf, sprintf and (v)snprintf implementation, optimized for speed on
// embedded systems with a very limited resources. These routines are thread
// safe and reentrant!
// Use this instead of the bloated standard/newlib printf cause these use
// malloc for printf (and may not be thread safe).
//
///////////////////////////////////////////////////////////////////////////////
#include <stdbool.h>
#include <stdint.h>
#include "printf.h"
// define this globally (e.g. gcc -DPRINTF_INCLUDE_CONFIG_H ...) to include the
// printf_config.h header file
// default: undefined
#ifdef PRINTF_INCLUDE_CONFIG_H
#include "printf_config.h"
#endif
// 'ntoa' conversion buffer size, this must be big enough to hold one converted
// numeric number including padded zeros (dynamically created on stack)
// default: 32 byte
#ifndef PRINTF_NTOA_BUFFER_SIZE
#define PRINTF_NTOA_BUFFER_SIZE 32U
#endif
// 'ftoa' conversion buffer size, this must be big enough to hold one converted
// float number including padded zeros (dynamically created on stack)
// default: 32 byte
#ifndef PRINTF_FTOA_BUFFER_SIZE
#define PRINTF_FTOA_BUFFER_SIZE 32U
#endif
// support for the floating point type (%f)
// default: activated
#ifndef PRINTF_DISABLE_SUPPORT_FLOAT
#define PRINTF_SUPPORT_FLOAT
#endif
// support for exponential floating point notation (%e/%g)
// default: activated
#ifndef PRINTF_DISABLE_SUPPORT_EXPONENTIAL
#define PRINTF_SUPPORT_EXPONENTIAL
#endif
// define the default floating point precision
// default: 6 digits
#ifndef PRINTF_DEFAULT_FLOAT_PRECISION
#define PRINTF_DEFAULT_FLOAT_PRECISION 6U
#endif
// define the largest float suitable to print with %f
// default: 1e9
#ifndef PRINTF_MAX_FLOAT
#define PRINTF_MAX_FLOAT 1e9
#endif
// support for the long long types (%llu or %p)
// default: activated
#ifndef PRINTF_DISABLE_SUPPORT_LONG_LONG
#define PRINTF_SUPPORT_LONG_LONG
#endif
// support for the ptrdiff_t type (%t)
// ptrdiff_t is normally defined in <stddef.h> as long or long long type
// default: activated
#ifndef PRINTF_DISABLE_SUPPORT_PTRDIFF_T
#define PRINTF_SUPPORT_PTRDIFF_T
#endif
///////////////////////////////////////////////////////////////////////////////
// internal flag definitions
#define FLAGS_ZEROPAD (1U << 0U)
#define FLAGS_LEFT (1U << 1U)
#define FLAGS_PLUS (1U << 2U)
#define FLAGS_SPACE (1U << 3U)
#define FLAGS_HASH (1U << 4U)
#define FLAGS_UPPERCASE (1U << 5U)
#define FLAGS_CHAR (1U << 6U)
#define FLAGS_SHORT (1U << 7U)
#define FLAGS_LONG (1U << 8U)
#define FLAGS_LONG_LONG (1U << 9U)
#define FLAGS_PRECISION (1U << 10U)
#define FLAGS_ADAPT_EXP (1U << 11U)
// import float.h for DBL_MAX
#if defined(PRINTF_SUPPORT_FLOAT)
#include <float.h>
#endif
// output function type
typedef void (*out_fct_type)(char character, void* buffer, size_t idx, size_t maxlen);
// wrapper (used as buffer) for output function type
typedef struct {
void (*fct)(char character, void* arg);
void* arg;
} out_fct_wrap_type;
// internal buffer output
static inline void _out_buffer(char character, void* buffer, size_t idx, size_t maxlen)
{
if (idx < maxlen) {
((char*)buffer)[idx] = character;
}
}
// internal null output
static inline void _out_null(char character, void* buffer, size_t idx, size_t maxlen)
{
(void)character; (void)buffer; (void)idx; (void)maxlen;
}
// internal _putchar wrapper
static inline void _out_char(char character, void* buffer, size_t idx, size_t maxlen)
{
(void)buffer; (void)idx; (void)maxlen;
if (character) {
_putchar(character);
}
}
// internal output function wrapper
static inline void _out_fct(char character, void* buffer, size_t idx, size_t maxlen)
{
(void)idx; (void)maxlen;
if (character) {
// buffer is the output fct pointer
((out_fct_wrap_type*)buffer)->fct(character, ((out_fct_wrap_type*)buffer)->arg);
}
}
// internal secure strlen
// \return The length of the string (excluding the terminating 0) limited by 'maxsize'
static inline unsigned int _strnlen_s(const char* str, size_t maxsize)
{
const char* s;
for (s = str; *s && maxsize--; ++s);
return (unsigned int)(s - str);
}
// internal test if char is a digit (0-9)
// \return true if char is a digit
static inline bool _is_digit(char ch)
{
return (ch >= '0') && (ch <= '9');
}
// internal ASCII string to unsigned int conversion
static unsigned int _atoi(const char** str)
{
unsigned int i = 0U;
while (_is_digit(**str)) {
i = i * 10U + (unsigned int)(*((*str)++) - '0');
}
return i;
}
// output the specified string in reverse, taking care of any zero-padding
static size_t _out_rev(out_fct_type out, char* buffer, size_t idx, size_t maxlen, const char* buf, size_t len, unsigned int width, unsigned int flags)
{
const size_t start_idx = idx;
// pad spaces up to given width
if (!(flags & FLAGS_LEFT) && !(flags & FLAGS_ZEROPAD)) {
for (size_t i = len; i < width; i++) {
out(' ', buffer, idx++, maxlen);
}
}
// reverse string
while (len) {
out(buf[--len], buffer, idx++, maxlen);
}
// append pad spaces up to given width
if (flags & FLAGS_LEFT) {
while (idx - start_idx < width) {
out(' ', buffer, idx++, maxlen);
}
}
return idx;
}
// internal itoa format
static size_t _ntoa_format(out_fct_type out, char* buffer, size_t idx, size_t maxlen, char* buf, size_t len, bool negative, unsigned int base, unsigned int prec, unsigned int width, unsigned int flags)
{
// pad leading zeros
if (!(flags & FLAGS_LEFT)) {
if (width && (flags & FLAGS_ZEROPAD) && (negative || (flags & (FLAGS_PLUS | FLAGS_SPACE)))) {
width--;
}
while ((len < prec) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = '0';
}
while ((flags & FLAGS_ZEROPAD) && (len < width) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = '0';
}
}
// handle hash
if (flags & FLAGS_HASH) {
if (!(flags & FLAGS_PRECISION) && len && ((len == prec) || (len == width))) {
len--;
if (len && (base == 16U)) {
len--;
}
}
if ((base == 16U) && !(flags & FLAGS_UPPERCASE) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = 'x';
}
else if ((base == 16U) && (flags & FLAGS_UPPERCASE) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = 'X';
}
else if ((base == 2U) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = 'b';
}
if (len < PRINTF_NTOA_BUFFER_SIZE) {
buf[len++] = '0';
}
}
if (len < PRINTF_NTOA_BUFFER_SIZE) {
if (negative) {
buf[len++] = '-';
}
else if (flags & FLAGS_PLUS) {
buf[len++] = '+'; // ignore the space if the '+' exists
}
else if (flags & FLAGS_SPACE) {
buf[len++] = ' ';
}
}
return _out_rev(out, buffer, idx, maxlen, buf, len, width, flags);
}
// internal itoa for 'long' type
static size_t _ntoa_long(out_fct_type out, char* buffer, size_t idx, size_t maxlen, unsigned long value, bool negative, unsigned long base, unsigned int prec, unsigned int width, unsigned int flags)
{
char buf[PRINTF_NTOA_BUFFER_SIZE];
size_t len = 0U;
// no hash for 0 values
if (!value) {
flags &= ~FLAGS_HASH;
}
// write if precision != 0 and value is != 0
if (!(flags & FLAGS_PRECISION) || value) {
do {
const char digit = (char)(value % base);
buf[len++] = digit < 10 ? '0' + digit : (flags & FLAGS_UPPERCASE ? 'A' : 'a') + digit - 10;
value /= base;
} while (value && (len < PRINTF_NTOA_BUFFER_SIZE));
}
return _ntoa_format(out, buffer, idx, maxlen, buf, len, negative, (unsigned int)base, prec, width, flags);
}
// internal itoa for 'long long' type
#if defined(PRINTF_SUPPORT_LONG_LONG)
static size_t _ntoa_long_long(out_fct_type out, char* buffer, size_t idx, size_t maxlen, unsigned long long value, bool negative, unsigned long long base, unsigned int prec, unsigned int width, unsigned int flags)
{
char buf[PRINTF_NTOA_BUFFER_SIZE];
size_t len = 0U;
// no hash for 0 values
if (!value) {
flags &= ~FLAGS_HASH;
}
// write if precision != 0 and value is != 0
if (!(flags & FLAGS_PRECISION) || value) {
do {
const char digit = (char)(value % base);
buf[len++] = digit < 10 ? '0' + digit : (flags & FLAGS_UPPERCASE ? 'A' : 'a') + digit - 10;
value /= base;
} while (value && (len < PRINTF_NTOA_BUFFER_SIZE));
}
return _ntoa_format(out, buffer, idx, maxlen, buf, len, negative, (unsigned int)base, prec, width, flags);
}
#endif // PRINTF_SUPPORT_LONG_LONG
#if defined(PRINTF_SUPPORT_FLOAT)
#if defined(PRINTF_SUPPORT_EXPONENTIAL)
// forward declaration so that _ftoa can switch to exp notation for values > PRINTF_MAX_FLOAT
static size_t _etoa(out_fct_type out, char* buffer, size_t idx, size_t maxlen, double value, unsigned int prec, unsigned int width, unsigned int flags);
#endif
// internal ftoa for fixed decimal floating point
static size_t _ftoa(out_fct_type out, char* buffer, size_t idx, size_t maxlen, double value, unsigned int prec, unsigned int width, unsigned int flags)
{
char buf[PRINTF_FTOA_BUFFER_SIZE];
size_t len = 0U;
double diff = 0.0;
// powers of 10
static const double pow10[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };
// test for special values
if (value != value)
return _out_rev(out, buffer, idx, maxlen, "nan", 3, width, flags);
if (value < -DBL_MAX)
return _out_rev(out, buffer, idx, maxlen, "fni-", 4, width, flags);
if (value > DBL_MAX)
return _out_rev(out, buffer, idx, maxlen, (flags & FLAGS_PLUS) ? "fni+" : "fni", (flags & FLAGS_PLUS) ? 4U : 3U, width, flags);
// test for very large values
// standard printf behavior is to print EVERY whole number digit -- which could be 100s of characters overflowing your buffers == bad
if ((value > PRINTF_MAX_FLOAT) || (value < -PRINTF_MAX_FLOAT)) {
#if defined(PRINTF_SUPPORT_EXPONENTIAL)
return _etoa(out, buffer, idx, maxlen, value, prec, width, flags);
#else
return 0U;
#endif
}
// test for negative
bool negative = false;
if (value < 0) {
negative = true;
value = 0 - value;
}
// set default precision, if not set explicitly
if (!(flags & FLAGS_PRECISION)) {
prec = PRINTF_DEFAULT_FLOAT_PRECISION;
}
// limit precision to 9, cause a prec >= 10 can lead to overflow errors
while ((len < PRINTF_FTOA_BUFFER_SIZE) && (prec > 9U)) {
buf[len++] = '0';
prec--;
}
int whole = (int)value;
double tmp = (value - whole) * pow10[prec];
unsigned long frac = (unsigned long)tmp;
diff = tmp - frac;
if (diff > 0.5) {
++frac;
// handle rollover, e.g. case 0.99 with prec 1 is 1.0
if (frac >= pow10[prec]) {
frac = 0;
++whole;
}
}
else if (diff < 0.5) {
}
else if ((frac == 0U) || (frac & 1U)) {
// if halfway, round up if odd OR if last digit is 0
++frac;
}
if (prec == 0U) {
diff = value - (double)whole;
if ((!(diff < 0.5) || (diff > 0.5)) && (whole & 1)) {
// exactly 0.5 and ODD, then round up
// 1.5 -> 2, but 2.5 -> 2
++whole;
}
}
else {
unsigned int count = prec;
// now do fractional part, as an unsigned number
while (len < PRINTF_FTOA_BUFFER_SIZE) {
--count;
buf[len++] = (char)(48U + (frac % 10U));
if (!(frac /= 10U)) {
break;
}
}
// add extra 0s
while ((len < PRINTF_FTOA_BUFFER_SIZE) && (count-- > 0U)) {
buf[len++] = '0';
}
if (len < PRINTF_FTOA_BUFFER_SIZE) {
// add decimal
buf[len++] = '.';
}
}
// do whole part, number is reversed
while (len < PRINTF_FTOA_BUFFER_SIZE) {
buf[len++] = (char)(48 + (whole % 10));
if (!(whole /= 10)) {
break;
}
}
// pad leading zeros
if (!(flags & FLAGS_LEFT) && (flags & FLAGS_ZEROPAD)) {
if (width && (negative || (flags & (FLAGS_PLUS | FLAGS_SPACE)))) {
width--;
}
while ((len < width) && (len < PRINTF_FTOA_BUFFER_SIZE)) {
buf[len++] = '0';
}
}
if (len < PRINTF_FTOA_BUFFER_SIZE) {
if (negative) {
buf[len++] = '-';
}
else if (flags & FLAGS_PLUS) {
buf[len++] = '+'; // ignore the space if the '+' exists
}
else if (flags & FLAGS_SPACE) {
buf[len++] = ' ';
}
}
return _out_rev(out, buffer, idx, maxlen, buf, len, width, flags);
}
#if defined(PRINTF_SUPPORT_EXPONENTIAL)
// internal ftoa variant for exponential floating-point type, contributed by Martijn Jasperse <m.jasperse@gmail.com>
static size_t _etoa(out_fct_type out, char* buffer, size_t idx, size_t maxlen, double value, unsigned int prec, unsigned int width, unsigned int flags)
{
// check for NaN and special values
if ((value != value) || (value > DBL_MAX) || (value < -DBL_MAX)) {
return _ftoa(out, buffer, idx, maxlen, value, prec, width, flags);
}
// determine the sign
const bool negative = value < 0;
if (negative) {
value = -value;
}
// default precision
if (!(flags & FLAGS_PRECISION)) {
prec = PRINTF_DEFAULT_FLOAT_PRECISION;
}
// determine the decimal exponent
// based on the algorithm by David Gay (https://www.ampl.com/netlib/fp/dtoa.c)
union {
uint64_t U;
double F;
} conv;
conv.F = value;
int exp2 = (int)((conv.U >> 52U) & 0x07FFU) - 1023; // effectively log2
conv.U = (conv.U & ((1ULL << 52U) - 1U)) | (1023ULL << 52U); // drop the exponent so conv.F is now in [1,2)
// now approximate log10 from the log2 integer part and an expansion of ln around 1.5
int expval = (int)(0.1760912590558 + exp2 * 0.301029995663981 + (conv.F - 1.5) * 0.289529654602168);
// now we want to compute 10^expval but we want to be sure it won't overflow
exp2 = (int)(expval * 3.321928094887362 + 0.5);
const double z = expval * 2.302585092994046 - exp2 * 0.6931471805599453;
const double z2 = z * z;
conv.U = (uint64_t)(exp2 + 1023) << 52U;
// compute exp(z) using continued fractions, see https://en.wikipedia.org/wiki/Exponential_function#Continued_fractions_for_ex
conv.F *= 1 + 2 * z / (2 - z + (z2 / (6 + (z2 / (10 + z2 / 14)))));
// correct for rounding errors
if (value < conv.F) {
expval--;
conv.F /= 10;
}
// the exponent format is "%+03d" and largest value is "307", so set aside 4-5 characters
unsigned int minwidth = ((expval < 100) && (expval > -100)) ? 4U : 5U;
// in "%g" mode, "prec" is the number of *significant figures* not decimals
if (flags & FLAGS_ADAPT_EXP) {
// do we want to fall-back to "%f" mode?
if ((value >= 1e-4) && (value < 1e6)) {
if ((int)prec > expval) {
prec = (unsigned)((int)prec - expval - 1);
}
else {
prec = 0;
}
flags |= FLAGS_PRECISION; // make sure _ftoa respects precision
// no characters in exponent
minwidth = 0U;
expval = 0;
}
else {
// we use one sigfig for the whole part
if ((prec > 0) && (flags & FLAGS_PRECISION)) {
--prec;
}
}
}
// will everything fit?
unsigned int fwidth = width;
if (width > minwidth) {
// we didn't fall-back so subtract the characters required for the exponent
fwidth -= minwidth;
} else {
// not enough characters, so go back to default sizing
fwidth = 0U;
}
if ((flags & FLAGS_LEFT) && minwidth) {
// if we're padding on the right, DON'T pad the floating part
fwidth = 0U;
}
// rescale the float value
if (expval) {
value /= conv.F;
}
// output the floating part
const size_t start_idx = idx;
idx = _ftoa(out, buffer, idx, maxlen, negative ? -value : value, prec, fwidth, flags & ~FLAGS_ADAPT_EXP);
// output the exponent part
if (minwidth) {
// output the exponential symbol
out((flags & FLAGS_UPPERCASE) ? 'E' : 'e', buffer, idx++, maxlen);
// output the exponent value
idx = _ntoa_long(out, buffer, idx, maxlen, (expval < 0) ? -expval : expval, expval < 0, 10, 0, minwidth-1, FLAGS_ZEROPAD | FLAGS_PLUS);
// might need to right-pad spaces
if (flags & FLAGS_LEFT) {
while (idx - start_idx < width) out(' ', buffer, idx++, maxlen);
}
}
return idx;
}
#endif // PRINTF_SUPPORT_EXPONENTIAL
#endif // PRINTF_SUPPORT_FLOAT
// internal vsnprintf
static int _vsnprintf(out_fct_type out, char* buffer, const size_t maxlen, const char* format, va_list va)
{
unsigned int flags, width, precision, n;
size_t idx = 0U;
if (!buffer) {
// use null output function
out = _out_null;
}
while (*format)
{
// format specifier? %[flags][width][.precision][length]
if (*format != '%') {
// no
out(*format, buffer, idx++, maxlen);
format++;
continue;
}
else {
// yes, evaluate it
format++;
}
// evaluate flags
flags = 0U;
do {
switch (*format) {
case '0': flags |= FLAGS_ZEROPAD; format++; n = 1U; break;
case '-': flags |= FLAGS_LEFT; format++; n = 1U; break;
case '+': flags |= FLAGS_PLUS; format++; n = 1U; break;
case ' ': flags |= FLAGS_SPACE; format++; n = 1U; break;
case '#': flags |= FLAGS_HASH; format++; n = 1U; break;
default : n = 0U; break;
}
} while (n);
// evaluate width field
width = 0U;
if (_is_digit(*format)) {
width = _atoi(&format);
}
else if (*format == '*') {
const int w = va_arg(va, int);
if (w < 0) {
flags |= FLAGS_LEFT; // reverse padding
width = (unsigned int)-w;
}
else {
width = (unsigned int)w;
}
format++;
}
// evaluate precision field
precision = 0U;
if (*format == '.') {
flags |= FLAGS_PRECISION;
format++;
if (_is_digit(*format)) {
precision = _atoi(&format);
}
else if (*format == '*') {
const int prec = (int)va_arg(va, int);
precision = prec > 0 ? (unsigned int)prec : 0U;
format++;
}
}
// evaluate length field
switch (*format) {
case 'l' :
flags |= FLAGS_LONG;
format++;
if (*format == 'l') {
flags |= FLAGS_LONG_LONG;
format++;
}
break;
case 'h' :
flags |= FLAGS_SHORT;
format++;
if (*format == 'h') {
flags |= FLAGS_CHAR;
format++;
}
break;
#if defined(PRINTF_SUPPORT_PTRDIFF_T)
case 't' :
flags |= (sizeof(ptrdiff_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
format++;
break;
#endif
case 'j' :
flags |= (sizeof(intmax_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
format++;
break;
case 'z' :
flags |= (sizeof(size_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
format++;
break;
default :
break;
}
// evaluate specifier
switch (*format) {
case 'd' :
case 'i' :
case 'u' :
case 'x' :
case 'X' :
case 'o' :
case 'b' : {
// set the base
unsigned int base;
if (*format == 'x' || *format == 'X') {
base = 16U;
}
else if (*format == 'o') {
base = 8U;
}
else if (*format == 'b') {
base = 2U;
}
else {
base = 10U;
flags &= ~FLAGS_HASH; // no hash for dec format
}
// uppercase
if (*format == 'X') {
flags |= FLAGS_UPPERCASE;
}
// no plus or space flag for u, x, X, o, b
if ((*format != 'i') && (*format != 'd')) {
flags &= ~(FLAGS_PLUS | FLAGS_SPACE);
}
// ignore '0' flag when precision is given
if (flags & FLAGS_PRECISION) {
flags &= ~FLAGS_ZEROPAD;
}
// convert the integer
if ((*format == 'i') || (*format == 'd')) {
// signed
if (flags & FLAGS_LONG_LONG) {
#if defined(PRINTF_SUPPORT_LONG_LONG)
const long long value = va_arg(va, long long);
idx = _ntoa_long_long(out, buffer, idx, maxlen, (unsigned long long)(value > 0 ? value : 0 - value), value < 0, base, precision, width, flags);
#endif
}
else if (flags & FLAGS_LONG) {
const long value = va_arg(va, long);
idx = _ntoa_long(out, buffer, idx, maxlen, (unsigned long)(value > 0 ? value : 0 - value), value < 0, base, precision, width, flags);
}
else {
const int value = (flags & FLAGS_CHAR) ? (char)va_arg(va, int) : (flags & FLAGS_SHORT) ? (short int)va_arg(va, int) : va_arg(va, int);
idx = _ntoa_long(out, buffer, idx, maxlen, (unsigned int)(value > 0 ? value : 0 - value), value < 0, base, precision, width, flags);
}
}
else {
// unsigned
if (flags & FLAGS_LONG_LONG) {
#if defined(PRINTF_SUPPORT_LONG_LONG)
idx = _ntoa_long_long(out, buffer, idx, maxlen, va_arg(va, unsigned long long), false, base, precision, width, flags);
#endif
}
else if (flags & FLAGS_LONG) {
idx = _ntoa_long(out, buffer, idx, maxlen, va_arg(va, unsigned long), false, base, precision, width, flags);
}
else {
const unsigned int value = (flags & FLAGS_CHAR) ? (unsigned char)va_arg(va, unsigned int) : (flags & FLAGS_SHORT) ? (unsigned short int)va_arg(va, unsigned int) : va_arg(va, unsigned int);
idx = _ntoa_long(out, buffer, idx, maxlen, value, false, base, precision, width, flags);
}
}
format++;
break;
}
#if defined(PRINTF_SUPPORT_FLOAT)
case 'f' :
case 'F' :
if (*format == 'F') flags |= FLAGS_UPPERCASE;
idx = _ftoa(out, buffer, idx, maxlen, va_arg(va, double), precision, width, flags);
format++;
break;
#if defined(PRINTF_SUPPORT_EXPONENTIAL)
case 'e':
case 'E':
case 'g':
case 'G':
if ((*format == 'g')||(*format == 'G')) flags |= FLAGS_ADAPT_EXP;
if ((*format == 'E')||(*format == 'G')) flags |= FLAGS_UPPERCASE;
idx = _etoa(out, buffer, idx, maxlen, va_arg(va, double), precision, width, flags);
format++;
break;
#endif // PRINTF_SUPPORT_EXPONENTIAL
#endif // PRINTF_SUPPORT_FLOAT
case 'c' : {
unsigned int l = 1U;
// pre padding
if (!(flags & FLAGS_LEFT)) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
// char output
out((char)va_arg(va, int), buffer, idx++, maxlen);
// post padding
if (flags & FLAGS_LEFT) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
format++;
break;
}
case 's' : {
const char* p = va_arg(va, char*);
unsigned int l = _strnlen_s(p, precision ? precision : (size_t)-1);
// pre padding
if (flags & FLAGS_PRECISION) {
l = (l < precision ? l : precision);
}
if (!(flags & FLAGS_LEFT)) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
// string output
while ((*p != 0) && (!(flags & FLAGS_PRECISION) || precision--)) {
out(*(p++), buffer, idx++, maxlen);
}
// post padding
if (flags & FLAGS_LEFT) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
format++;
break;
}
case 'p' : {
width = sizeof(void*) * 2U;
flags |= FLAGS_ZEROPAD | FLAGS_UPPERCASE;
#if defined(PRINTF_SUPPORT_LONG_LONG)
const bool is_ll = sizeof(uintptr_t) == sizeof(long long);
if (is_ll) {
idx = _ntoa_long_long(out, buffer, idx, maxlen, (uintptr_t)va_arg(va, void*), false, 16U, precision, width, flags);
}
else {
#endif
idx = _ntoa_long(out, buffer, idx, maxlen, (unsigned long)((uintptr_t)va_arg(va, void*)), false, 16U, precision, width, flags);
#if defined(PRINTF_SUPPORT_LONG_LONG)
}
#endif
format++;
break;
}
case '%' :
out('%', buffer, idx++, maxlen);
format++;
break;
default :
out(*format, buffer, idx++, maxlen);
format++;
break;
}
}
// termination
out((char)0, buffer, idx < maxlen ? idx : maxlen - 1U, maxlen);
// return written chars without terminating \0
return (int)idx;
}
///////////////////////////////////////////////////////////////////////////////
int printf_(const char* format, ...)
{
va_list va;
va_start(va, format);
char buffer[1];
const int ret = _vsnprintf(_out_char, buffer, (size_t)-1, format, va);
va_end(va);
return ret;
}
int sprintf_(char* buffer, const char* format, ...)
{
va_list va;
va_start(va, format);
const int ret = _vsnprintf(_out_buffer, buffer, (size_t)-1, format, va);
va_end(va);
return ret;
}
int snprintf_(char* buffer, size_t count, const char* format, ...)
{
va_list va;
va_start(va, format);
const int ret = _vsnprintf(_out_buffer, buffer, count, format, va);
va_end(va);
return ret;
}
int vprintf_(const char* format, va_list va)
{
char buffer[1];
return _vsnprintf(_out_char, buffer, (size_t)-1, format, va);
}
int vsnprintf_(char* buffer, size_t count, const char* format, va_list va)
{
return _vsnprintf(_out_buffer, buffer, count, format, va);
}
int fctprintf(void (*out)(char character, void* arg), void* arg, const char* format, ...)
{
va_list va;
va_start(va, format);
const out_fct_wrap_type out_fct_wrap = { out, arg };
const int ret = _vsnprintf(_out_fct, (char*)(uintptr_t)&out_fct_wrap, (size_t)-1, format, va);
va_end(va);
return ret;
}

117
runtime/printf.h Normal file
View File

@ -0,0 +1,117 @@
///////////////////////////////////////////////////////////////////////////////
// \author (c) Marco Paland (info@paland.com)
// 2014-2019, PALANDesign Hannover, Germany
//
// \license The MIT License (MIT)
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
// \brief Tiny printf, sprintf and snprintf implementation, optimized for speed on
// embedded systems with a very limited resources.
// Use this instead of bloated standard/newlib printf.
// These routines are thread safe and reentrant.
//
///////////////////////////////////////////////////////////////////////////////
#ifndef _PRINTF_H_
#define _PRINTF_H_
#include <stdarg.h>
#include <stddef.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* Output a character to a custom device like UART, used by the printf() function
* This function is declared here only. You have to write your custom implementation somewhere
* \param character Character to output
*/
void _putchar(char character);
/**
* Tiny printf implementation
* You have to implement _putchar if you use printf()
* To avoid conflicts with the regular printf() API it is overridden by macro defines
* and internal underscore-appended functions like printf_() are used
* \param format A string that specifies the format of the output
* \return The number of characters that are written into the array, not counting the terminating null character
*/
#define printf printf_
int printf_(const char* format, ...);
/**
* Tiny sprintf implementation
* Due to security reasons (buffer overflow) YOU SHOULD CONSIDER USING (V)SNPRINTF INSTEAD!
* \param buffer A pointer to the buffer where to store the formatted string. MUST be big enough to store the output!
* \param format A string that specifies the format of the output
* \return The number of characters that are WRITTEN into the buffer, not counting the terminating null character
*/
#define sprintf sprintf_
int sprintf_(char* buffer, const char* format, ...);
/**
* Tiny snprintf/vsnprintf implementation
* \param buffer A pointer to the buffer where to store the formatted string
* \param count The maximum number of characters to store in the buffer, including a terminating null character
* \param format A string that specifies the format of the output
* \param va A value identifying a variable arguments list
* \return The number of characters that COULD have been written into the buffer, not counting the terminating
* null character. A value equal or larger than count indicates truncation. Only when the returned value
* is non-negative and less than count, the string has been completely written.
*/
#define snprintf snprintf_
#define vsnprintf vsnprintf_
int snprintf_(char* buffer, size_t count, const char* format, ...);
int vsnprintf_(char* buffer, size_t count, const char* format, va_list va);
/**
* Tiny vprintf implementation
* \param format A string that specifies the format of the output
* \param va A value identifying a variable arguments list
* \return The number of characters that are WRITTEN into the buffer, not counting the terminating null character
*/
#define vprintf vprintf_
int vprintf_(const char* format, va_list va);
/**
* printf with output function
* You may use this as dynamic alternative to printf() with its fixed _putchar() output
* \param out An output function which takes one character and an argument pointer
* \param arg An argument pointer for user data passed to output function
* \param format A string that specifies the format of the output
* \return The number of characters that are sent to the output function, not counting the terminating null character
*/
int fctprintf(void (*out)(char character, void* arg), void* arg, const char* format, ...);
#ifdef __cplusplus
}
#endif
#endif // _PRINTF_H_

98
runtime/stdio.c Normal file
View File

@ -0,0 +1,98 @@
#include "stdio.h"
#include "unicode.h"
#include "printf.h"
#include "../memory/memory.h"
#include "../graphics/graphics.h"
#include <string.h>
#include <stdarg.h>
// printf wants this
void _putchar(char c) {
if (!graphics_Framebuffer) {
UINT16 buf[2] = {c, 0};
efiStdout->OutputString(efiStdout, buf);
} else {
console_WriteChar(&HelosGraphics_Color_White, c);
if (c == '\n') { // swap buffer on newline
graphics_SwapBuffer();
}
}
}
int __io_WriteConsole_bufSize = 256;
UINT16 __io_WriteConsole_bufferReal[256];
UINT16 *__io_WriteConsole_buffer = __io_WriteConsole_bufferReal;
void __io_WriteConsole_ResizeBuffer(int size) {
if (__io_WriteConsole_bufSize < size) {
while (__io_WriteConsole_bufSize < size)
__io_WriteConsole_bufSize *= 2;
DEBUG("allocate -> %d", __io_WriteConsole_bufSize);
if (__io_WriteConsole_buffer != __io_WriteConsole_bufferReal)
kFree(__io_WriteConsole_buffer);
__io_WriteConsole_buffer = kMalloc(size * sizeof(UINT16));
}
}
void io_WriteConsole(const char *str) {
int size = 0; // don't include the \0 at the end here
int len = strlen(str); // left the \0 out here too
for (int i = 0;
i < len;
i += utf8_Decode(str + i, len - i, NULL), size++) {}
__io_WriteConsole_ResizeBuffer(size + 1);
uint32_t codepoint;
for (int i = 0, j = 0;
i < len;) {
i += utf8_Decode(str + i, len - i, &codepoint);
__io_WriteConsole_buffer[j++] = codepoint;
}
__io_WriteConsole_buffer[size] = 0;
if (!graphics_Framebuffer) {
efiStdout->OutputString(efiStdout, __io_WriteConsole_buffer);
} else {
console_WriteUTF16(&HelosGraphics_Color_White, __io_WriteConsole_buffer, 0);
}
}
void io_WriteConsoleASCII(const char *str) {
if (!graphics_Framebuffer) {
int len = strlen(str);
__io_WriteConsole_ResizeBuffer(len + 1);
for (int i = 0; i <= len; i++)
__io_WriteConsole_buffer[i] = str[i];
efiStdout->OutputString(efiStdout, __io_WriteConsole_buffer);
} else {
console_WriteASCII(&HelosGraphics_Color_White, str, 0);
}
}
char __io_Printf_buffer[4096];
int io_Printf(const char *fmt, ...) {
va_list args;
va_start(args, fmt);
int ret = vsnprintf(__io_Printf_buffer, sizeof(__io_Printf_buffer), fmt, args);
va_end(args);
io_WriteConsole(__io_Printf_buffer);
return ret;
}
EFI_INPUT_KEY io_PauseForKeystroke() {
UINTN index;
EFI_INPUT_KEY key;
efiBootServices->WaitForEvent(1, &efiStdin->WaitForKey, &index);
efiSystemTable->ConIn->ReadKeyStroke(efiSystemTable->ConIn, &key);
return key;
}

40
runtime/stdio.h Normal file
View File

@ -0,0 +1,40 @@
#pragma once
#include "../main.h"
#include "unicode.h"
#ifdef __cplusplus
extern "C" {
#endif
// io_WriteConsole converts UTF-8 string given to Unicode(BMP only),
// then writing it to the Stdout SIMPLE_TEXT_OUTPUT_INTERFACE or the graphical console.
//
// All \n not preceeded by \r is substituted by \r\n. (WIP)
void io_WriteConsole(const char *str);
void io_WriteConsoleASCII(const char *str);
// io_Printf is a printf() replacement, printing to WriteConsole function.
int io_Printf(const char *format, ...);
EFI_INPUT_KEY io_PauseForKeystroke();
// Debugging printing marcos
#ifndef NDEBUG
#define DEBUG(...) \
do { \
printf(__FILE__ ":%d(%s) ", __LINE__, __func__); \
printf(__VA_ARGS__); \
} while (0)
#else
#define DEBUG(...)
#endif
#ifdef __cplusplus
}
#endif

10
runtime/string.c Normal file
View File

@ -0,0 +1,10 @@
#include <string.h>
size_t strlen(const char *s) {
size_t len = 0;
while (*(s++) != 0)
len++;
return len;
}

38
runtime/test_memmove.c Normal file
View File

@ -0,0 +1,38 @@
#include <stdio.h>
#include <stdint.h>
#include <inttypes.h>
#include <stdlib.h>
__attribute__((ms_abi)) void *memmove(void *, const void *, size_t);
__attribute__((ms_abi)) void *memset(void *, int, size_t);
void output_memmove(const char *str) {
puts(str);
}
int main(void) {
char str[] = "1234567890";
puts(str);
memmove(str + 4, str + 3, 3); // copy from [4,5,6] to [5,6,7]
puts(str);
memmove(str + 3, str + 4, 3); // copy from [4,5,6] to [5,6,7]
puts(str);
memset(str + 3, '0' + 7, 3);
puts(str);
for (int i = 0; i <= 10; i++)
printf("str[%d]=%d (%c)\n", i, str[i], str[i]);
// setting effective type of allocated memory to be int
int *p = malloc(3 * sizeof(int)); // allocated memory has no effective type
int arr[3] = {1, 2, 3};
memmove(p, arr, 3 * sizeof(int)); // allocated memory now has an effective type
printf("%d %d %d\n", p[0], p[1], p[2]);
// reinterpreting data
double d = 0.1;
// int64_t n = *(int64_t*)(&d); // strict aliasing violation
int64_t n;
memmove(&n, &d, sizeof d); // OK
printf("%a is %" PRIx64 " as an int64_t\n", d, n);
}

30
runtime/test_utf8.c Normal file
View File

@ -0,0 +1,30 @@
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "Unicode.h"
int main(int argc, char *argv[]) {
char str[] = {"天王盖地虎,宝塔镇河妖"};
int len = strlen(str);
printf("String: %s, Length: %d\n", str, len);
uint32_t codepoint, buffer[128];
int count = 0;
for (int i = 0;
i < len;
i += utf8_Decode(str + i, len - i, buffer + count), count++) {}
printf("Count=%d\n", count);
for (int i = 0; i < count; i++) {
printf("Buffer[%d] = %d, ", i, buffer[i]);
char bytes[5] = {};
utf8_Encode(bytes, buffer[i]);
printf("%s\n", bytes);
}
return 0;
}

84
runtime/unicode.c Normal file
View File

@ -0,0 +1,84 @@
#include "unicode.h"
size_t utf8_Decode(const char *utf8, size_t len, uint32_t *codepoint) {
// Some useful precomputed data
static const int trailing[256] =
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5};
static const uint32_t offsets[6] =
{0x00000000, 0x00003080, 0x000E2080, 0x03C82080, 0xFA082080, 0x82082080};
// decode the character
uint32_t output;
int trailingBytes;
// read the first byte
uint8_t first = *utf8;
trailingBytes = trailing[first];
if ((first >= HELOS_UTF8_CONTINUATION_MIN && first <= HELOS_UTF8_OVERLONG_LEADER_2) ||
(first >= HELOS_UTF8_INVALID_LEADER_MIN && first <= HELOS_UTF8_INVALID_LEADER_MAX) ||
trailingBytes + 1 > len) {
// corrupted data or incomplete character
trailingBytes = 0;
if (codepoint != 0)
(*codepoint) = HELOS_UNICODE_ERROR;
} else if (codepoint != 0) {
output = 0;
// so elegant!
switch (trailingBytes) {
case 5: output += (uint8_t)(*utf8++); output <<= 6;
case 4: output += (uint8_t)(*utf8++); output <<= 6;
case 3: output += (uint8_t)(*utf8++); output <<= 6;
case 2: output += (uint8_t)(*utf8++); output <<= 6;
case 1: output += (uint8_t)(*utf8++); output <<= 6;
case 0: output += (uint8_t)(*utf8++);
}
(*codepoint) = output - offsets[trailingBytes];
}
return trailingBytes + 1;
}
size_t utf8_EncodeLength(uint32_t codepoint) {
if (codepoint <= 0x007f) // 0000 ~ 007F
return 1;
else if (codepoint <= 0x07ff) // 0080 ~ 07FF
return 2;
else if (codepoint <= 0xffff) // 0800 ~ FFFF
return 3;
else if (codepoint <= 0x10ffff) // 10000 ~ 10FFFF
return 4;
return 0; // invalid
}
size_t utf8_Encode(char *utf8, uint32_t codepoint) {
// Some useful precomputed data
static const uint8_t firstBytes[7] = {0x00, 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC};
if (codepoint > HELOS_UNICODE_MAX)
codepoint = HELOS_UNICODE_ERROR; // substitute invalid codepoint
// get the number of bytes to write
size_t len = utf8_EncodeLength(codepoint);
// write the bytes
// so elegant also!
switch (len) {
case 4: utf8[3] = (char)((codepoint | 0x80) & 0xBF); codepoint >>= 6;
case 3: utf8[2] = (char)((codepoint | 0x80) & 0xBF); codepoint >>= 6;
case 2: utf8[1] = (char)((codepoint | 0x80) & 0xBF); codepoint >>= 6;
case 1: utf8[0] = (char)(codepoint | firstBytes[len]);
}
return len;
}

51
runtime/unicode.h Normal file
View File

@ -0,0 +1,51 @@
#pragma once
#include <stddef.h>
#include <stdint.h>
// Constants
#define HELOS_UNICODE_TYPE (uint32_t) // We use uint32_t to hold a Unicode codepoint.
#define HELOS_UNICODE_ERROR ((uint32_t)0xfffd) // The "error" char or "Unicode replacement character".
#define HELOS_UNICODE_MAX ((uint32_t)0x10ffff) // Maximum valid Unicode codepoint.
#define HELOS_UNICODE_SELF_REPRESENT (0x80) // Chars below SELF_REPRESENT represents themselves in a single byte.
#define HELOS_UTF8_MAX_BYTES 4 // Maximum number of bytes encoding one unicode point in UTF-8.
#define HELOS_UTF8_CONTINUATION_MIN 0xc0 // Minimum of the continuation range in which bytes are not the first byte of a sequence.
#define HELOS_UTF8_CONTINUATION_MAX 0xbf // Maximum of the continuation range.
#define HELOS_UTF8_OVERLONG_LEADER_1 0xc0 // First leader byte forming an overlong sequence (encoding <=0xff in 2 bytes).
#define HELOS_UTF8_OVERLONG_LEADER_2 0xc1 // Second leader byte forming an overlong sequence.
#define HELOS_UTF8_INVALID_LEADER_MIN 0xf5 // Minimum of the tailing range in which leader bytes form sequences more than 4 bytes long.
#define HELOS_UTF8_INVALID_LEADER_MAX 0xff // Maximum of the tailing range in which leader bytes are invalid.
#ifdef __cplusplus
extern "C" {
#endif
// utf8_Decode advances the UTF-8 sequence by one character,
// returning the number of bytes advanced.
//
// The codepoint pointer, if not NULL, is set to the decoded value.
// If the Unicode sequence is invalid, the replacement char is returned.
size_t utf8_Decode(const char *utf8, size_t length, uint32_t *codepoint);
// utf8_EncodeLength returns the number of bytes required to encode
// the given codepoint in UTF-8 (ranging from 1 to 4).
//
// returns 0 if the codepoint is invalid.
size_t utf8_EncodeLength(uint32_t codepoint);
// utf8_Encode encodes a new character into the UTF-8 buffer,
// if utf8 is not NULL, returning the number of bytes written (max 4).
//
// The buffer must have enough space.
size_t utf8_Encode(char *utf8, uint32_t codepoint);
#ifdef __cplusplus
}
#endif