util: tree-based associative container

This commit is contained in:
Edgaru089 2021-11-07 01:33:42 +08:00
parent 6832a76265
commit e5ba03599b
4 changed files with 379 additions and 0 deletions

80
util/test_tree.c Normal file
View File

@ -0,0 +1,80 @@
//$CC -g test_tree.c tree.c ../driver/random/random.c
#include "stdlib.h"
#include "stdio.h"
#include "tree.h"
tree_Tree *tree;
void insert(int a) {
bool new;
int *d = tree_Insert(tree, a, &new);
if (new)
*d = 1;
else
(*d)++;
}
int count(int a) {
int *d = tree_Find(tree, a);
if (!d)
return 0;
else
return *d;
}
void delete (int a) {
tree_Node *node = tree_FindNode(tree, a);
if (!node)
return;
(*(int *)node->data)--;
if ((*(int *)node->data) == 0)
tree_Delete(tree, node);
}
int main() {
tree = tree_Create(sizeof(int));
insert(1);
insert(2);
insert(3);
insert(6);
insert(1);
printf("%d\n", count(2));
printf("%d\n", count(4));
printf("%d\n", count(1));
delete (1);
printf("%d\n", count(1));
delete (1);
printf("%d\n", count(1));
delete (1);
printf("%d\n", count(1));
delete (2);
printf("%d\n", count(1));
insert(7);
insert(10);
insert(54);
insert(18);
insert(63);
insert(39);
tree_Node *i = tree_FirstNode(tree);
while (i) {
printf(" %d", (int)i->key);
i = tree_Node_Next(i);
}
printf("\n");
i = tree_LastNode(tree);
while (i) {
printf(" %d", (int)i->key);
i = tree_Node_Previous(i);
}
printf("\n");
}

164
util/tree.c Normal file
View File

@ -0,0 +1,164 @@
#include "tree.h"
#include "tree_internal.h"
#include "../main.h"
#include "../memory/memory.h"
#include "../driver/random/random.h"
#include "string.h"
// Create allocates and creates a new default Tree object.
tree_Tree *tree_Create(uintptr_t objectSize) {
tree_Tree *t = kMalloc(sizeof(tree_Tree));
t->objectSize = objectSize;
t->size = 0;
t->root = 0;
return t;
}
static inline tree_Node *__tree_NewNode(tree_Tree *t, uintptr_t key, tree_Node *father, uintptr_t internal) {
t->size++;
tree_Node *node = kMalloc(sizeof(tree_Node) - 1 + t->objectSize);
node->left = node->right = 0;
node->father = father;
node->key = key;
node->internal = internal;
return node;
}
static void __tree_DestroyNodes(tree_Node *node) {
if (node->left)
__tree_DestroyNodes(node->left);
if (node->right)
__tree_DestroyNodes(node->right);
kFree(node);
}
void tree_Destroy(tree_Tree *tree) {
if (tree->root)
__tree_DestroyNodes(tree->root);
kFree(tree);
}
// Will not return NULL
// SysV ABI because of the 6 arguments
SYSV_ABI static tree_Node *__tree_InsertNodes(tree_Tree *t, tree_Node *node, tree_Node *father, uintptr_t key, tree_Node **result, bool *added) {
if (!node) {
if (added)
*added = true;
return *result = __tree_NewNode(t, key, father, random_Rand() ^ key);
} else if (key < node->key) {
node->left = __tree_InsertNodes(t, node->left, node, key, result, added);
return node;
} else if (key > node->key) {
node->right = __tree_InsertNodes(t, node->right, node, key, result, added);
return node;
} else {
if (added)
*added = false;
*result = node;
return node;
}
}
tree_Node *tree_InsertNode(tree_Tree *t, uintptr_t key, bool *added) {
tree_Node *result;
t->root = __tree_InsertNodes(t, t->root, 0, key, &result, added);
if (*added)
__tree_treap_Adjust(result, &t->root);
return result;
}
void *tree_Insert(tree_Tree *t, uintptr_t key, bool *added) {
return tree_InsertNode(t, key, added)->data;
}
static tree_Node *__tree_FindNode(tree_Node *node, uintptr_t key) {
if (!node)
return NULL;
else if (key < node->key)
return __tree_FindNode(node->left, key);
else if (key > node->key)
return __tree_FindNode(node->right, key);
else
return node;
}
tree_Node *tree_FindNode(tree_Tree *t, uintptr_t key) {
return __tree_FindNode(t->root, key);
}
void *tree_Find(tree_Tree *t, uintptr_t key) {
tree_Node *node = tree_FindNode(t, key);
if (!node)
return NULL;
else
return node->data;
}
void tree_Delete(tree_Tree *t, tree_Node *node) {
while (node->left && node->right)
if (node->left->internal < node->right->internal)
__tree_Rotate(node->left, &t->root);
else
__tree_Rotate(node->right, &t->root);
if (node == t->root)
t->root = (node->left ? node->left : node->right);
__tree_Connect(node->father, (node->left ? node->left : node->right), __tree_Tell(node));
kFree(node);
}
tree_Node *tree_FirstNode(tree_Tree *tree) {
tree_Node *result = tree->root;
while (result->left)
result = result->left;
return result;
}
tree_Node *tree_LastNode(tree_Tree *tree) {
tree_Node *result = tree->root;
while (result->right)
result = result->right;
return result;
}
tree_Node *tree_Node_Next(tree_Node *node) {
if (node->right) {
tree_Node *result = node->right;
while (result->left)
result = result->left;
return result;
} else {
tree_Node *result = node;
while (result->father && __tree_Tell(result) == __tree_Right)
result = result->father;
return result->father;
}
}
// Node_Previous returns the previous node. Returns NULL if first.
tree_Node *tree_Node_Previous(tree_Node *node) {
if (node->left) {
tree_Node *result = node->left;
while (result->right)
result = result->right;
return result;
} else {
tree_Node *result = node;
while (result->father && __tree_Tell(result) == __tree_Left)
result = result->father;
return result->father;
}
}

75
util/tree.h Normal file
View File

@ -0,0 +1,75 @@
#pragma once
#include <stdint.h>
#include <stdbool.h>
#ifdef __cplusplus
extern "C" {
#endif
typedef struct __tree_Node {
uintptr_t key; // node key
struct __tree_Node *left, *right; // left and right sons
struct __tree_Node *father; // father node
uintptr_t internal; // internal data for balanced trees
char data[1]; // placeholder for object data
} tree_Node;
// Tree is a basic tree-based associative container.
//
// Right now it's a Treap.
typedef struct {
uintptr_t objectSize; // size in bytes of the object
tree_Node *root; // root of the tree, NULL if empty
uintptr_t size; // number of objects in the tree
} tree_Tree;
// Create allocates and creates a new default Tree object.
tree_Tree *tree_Create(uintptr_t objectSize);
// Destroy properly frees all data related to the structure, and itself.
void tree_Destroy(tree_Tree *tree);
// Insert inserts a new object (or locates an existing one).
//
// If *added is not NULL, it is set to true if the key does
// not exist and is actually added.
//
// Newly allocated data is not zeroed, nor initialized in any way.
//
// Returns the pointer to the newly allocated (or existing) data.
void *tree_Insert(tree_Tree *tree, uintptr_t key, bool *added);
// InsertNode does the same as Insert, but returns Node* instead of data.
tree_Node *tree_InsertNode(tree_Tree *tree, uintptr_t key, bool *added);
// Find locates an existing object by its key.
//
// Returns NULL if the object does not exist.
void *tree_Find(tree_Tree *tree, uintptr_t key);
// FindNode returns an existing tree node by its key.
//
// Used for iterating the tree objects.
tree_Node *tree_FindNode(tree_Tree *tree, uintptr_t key);
// FirstNode returns the first node in increasing order.
tree_Node *tree_FirstNode(tree_Tree *tree);
// LastNode returns the last node in increasing order.
tree_Node *tree_LastNode(tree_Tree *tree);
// Delete deletes an existing node from the tree.
void tree_Delete(tree_Tree *tree, tree_Node *node);
// Node_Next returns the next node. Returns NULL if the node is the last.
tree_Node *tree_Node_Next(tree_Node *node);
// Node_Previous returns the previous node. Returns NULL if first.
tree_Node *tree_Node_Previous(tree_Node *node);
#ifdef __cplusplus
}
#endif

60
util/tree_internal.h Normal file
View File

@ -0,0 +1,60 @@
#pragma once
#include "tree.h"
typedef enum {
__tree_Left,
__tree_Right,
} __tree_ConnectType;
static inline __tree_ConnectType __tree_ConnectType_Invert(__tree_ConnectType type) {
return (__tree_ConnectType)(!type);
}
static inline __tree_ConnectType __tree_Tell(tree_Node *son) {
if (!son->father)
return __tree_Left;
if (son->father->left == son)
return __tree_Left;
else
return __tree_Right;
}
static inline tree_Node *__tree_Get(tree_Node *father, __tree_ConnectType type) {
return (type == __tree_Left) ? father->left : father->right;
}
static inline void __tree_Connect(tree_Node *father, tree_Node *son, __tree_ConnectType type) {
if (son)
son->father = father;
if (father) {
if (type == __tree_Left)
father->left = son;
else
father->right = son;
}
}
// Rotates the node up.
static inline void __tree_Rotate(tree_Node *node, tree_Node **root) {
if (!node->father)
return;
__tree_ConnectType type = __tree_Tell(node);
tree_Node *f = node->father,
*b = __tree_Get(node, __tree_ConnectType_Invert(type));
__tree_Connect(f->father, node, __tree_Tell(f));
__tree_Connect(node, f, __tree_ConnectType_Invert(type));
__tree_Connect(f, b, type);
if (!node->father)
*root = node;
}
// Adjust the tree as a Treap
static inline void __tree_treap_Adjust(tree_Node *node, tree_Node **root) {
while (node->father && node->father->internal > node->internal)
__tree_Rotate(node, root);
}