SFML/test/Graphics/Shader.test.cpp

282 lines
10 KiB
C++
Raw Normal View History

#include <SFML/Graphics/Shader.hpp>
// Other 1st party headers
#include <SFML/System/FileInputStream.hpp>
2023-01-18 12:51:08 +08:00
#include <catch2/catch_test_macros.hpp>
#include <type_traits>
namespace
{
constexpr auto vertexSource = R"(
uniform vec2 storm_position;
uniform float storm_total_radius;
uniform float storm_inner_radius;
void main()
{
vec4 vertex = gl_ModelViewMatrix * gl_Vertex;
vec2 offset = vertex.xy - storm_position;
float len = length(offset);
if (len < storm_total_radius)
{
float push_distance = storm_inner_radius + len / storm_total_radius * (storm_total_radius - storm_inner_radius);
vertex.xy = storm_position + normalize(offset) * push_distance;
}
gl_Position = gl_ProjectionMatrix * vertex;
gl_TexCoord[0] = gl_TextureMatrix[0] * gl_MultiTexCoord0;
gl_FrontColor = gl_Color;
}
)";
constexpr auto geometrySource = R"(
#version 150
// The render target's resolution (used for scaling)
uniform vec2 resolution;
// The billboards' size
uniform vec2 size;
// Input is the passed point cloud
layout (points) in;
// The output will consist of triangle strips with four vertices each
layout (triangle_strip, max_vertices = 4) out;
// Output texture coordinates
out vec2 tex_coord;
// Main entry point
void main()
{
// Calculate the half width/height of the billboards
vec2 half_size = size / 2.f;
// Scale the size based on resolution (1 would be full width/height)
half_size /= resolution;
// Iterate over all vertices
for (int i = 0; i < gl_in.length(); ++i)
{
// Retrieve the passed vertex position
vec2 pos = gl_in[i].gl_Position.xy;
// Bottom left vertex
gl_Position = vec4(pos - half_size, 0.f, 1.f);
tex_coord = vec2(1.f, 1.f);
EmitVertex();
// Bottom right vertex
gl_Position = vec4(pos.x + half_size.x, pos.y - half_size.y, 0.f, 1.f);
tex_coord = vec2(0.f, 1.f);
EmitVertex();
// Top left vertex
gl_Position = vec4(pos.x - half_size.x, pos.y + half_size.y, 0.f, 1.f);
tex_coord = vec2(1.f, 0.f);
EmitVertex();
// Top right vertex
gl_Position = vec4(pos + half_size, 0.f, 1.f);
tex_coord = vec2(0.f, 0.f);
EmitVertex();
// And finalize the primitive
EndPrimitive();
}
}
)";
constexpr auto fragmentSource = R"(
uniform sampler2D texture;
uniform float blink_alpha;
void main()
{
vec4 pixel = gl_Color;
pixel.a = blink_alpha;
gl_FragColor = pixel;
}
)";
#ifdef SFML_RUN_DISPLAY_TESTS
#ifdef SFML_OPENGL_ES
constexpr bool skipShaderDummyTest = false;
constexpr bool skipShaderFullTest = true;
#else
constexpr bool skipShaderDummyTest = true;
constexpr bool skipShaderFullTest = false;
#endif
#else
constexpr bool skipShaderDummyTest = true;
constexpr bool skipShaderFullTest = true;
#endif
2023-01-18 12:51:08 +08:00
std::string skipShaderDummyTests()
{
if constexpr (skipShaderDummyTest)
// https://github.com/catchorg/Catch2/blob/devel/docs/test-cases-and-sections.md#special-tags
// This tag tells Catch2 to not run a given TEST_CASE
return "[.shaderDummy]";
else
return "";
}
std::string skipShaderFullTests()
{
if constexpr (skipShaderFullTest)
// https://github.com/catchorg/Catch2/blob/devel/docs/test-cases-and-sections.md#special-tags
// This tag tells Catch2 to not run a given TEST_CASE
return "[.shaderFull]";
else
return "";
}
} // namespace
2023-01-18 12:51:08 +08:00
TEST_CASE("[Graphics] sf::Shader (Dummy Implementation)", skipShaderDummyTests())
{
2023-01-18 12:51:08 +08:00
SECTION("Available")
{
CHECK_FALSE(sf::Shader::isAvailable());
CHECK_FALSE(sf::Shader::isGeometryAvailable());
}
SECTION("loadFromMemory()")
{
CHECK_FALSE(sf::Shader::loadFromMemory(vertexSource, sf::Shader::Type::Vertex).has_value());
CHECK_FALSE(sf::Shader::loadFromMemory(geometrySource, sf::Shader::Type::Geometry).has_value());
CHECK_FALSE(sf::Shader::loadFromMemory(fragmentSource, sf::Shader::Type::Fragment).has_value());
CHECK_FALSE(sf::Shader::loadFromMemory(vertexSource, fragmentSource).has_value());
CHECK_FALSE(sf::Shader::loadFromMemory(vertexSource, geometrySource, fragmentSource).has_value());
}
}
2023-01-18 12:51:08 +08:00
TEST_CASE("[Graphics] sf::Shader", skipShaderFullTests())
{
2023-01-18 12:51:08 +08:00
SECTION("Type traits")
{
STATIC_CHECK(!std::is_default_constructible_v<sf::Shader>);
2023-01-18 12:51:08 +08:00
STATIC_CHECK(!std::is_copy_constructible_v<sf::Shader>);
STATIC_CHECK(!std::is_copy_assignable_v<sf::Shader>);
STATIC_CHECK(std::is_nothrow_move_constructible_v<sf::Shader>);
STATIC_CHECK(std::is_nothrow_move_assignable_v<sf::Shader>);
}
2024-04-12 00:29:03 +08:00
SECTION("Move semantics")
{
SECTION("Construction")
{
sf::Shader movedShader = sf::Shader::loadFromFile("Graphics/shader.vert", sf::Shader::Type::Vertex).value();
2024-04-12 00:29:03 +08:00
const sf::Shader shader = std::move(movedShader);
CHECK(shader.getNativeHandle() != 0);
2024-04-12 00:29:03 +08:00
}
SECTION("Assignment")
{
sf::Shader movedShader = sf::Shader::loadFromFile("Graphics/shader.vert", sf::Shader::Type::Vertex).value();
sf::Shader shader = sf::Shader::loadFromFile("Graphics/shader.frag", sf::Shader::Type::Fragment).value();
shader = std::move(movedShader);
CHECK(shader.getNativeHandle() != 0);
2024-04-12 00:29:03 +08:00
}
}
SECTION("loadFromFile()")
{
SECTION("One shader")
{
CHECK(!sf::Shader::loadFromFile("does-not-exist.vert", sf::Shader::Type::Vertex));
const auto vertexShader = sf::Shader::loadFromFile("Graphics/shader.vert", sf::Shader::Type::Vertex);
CHECK(vertexShader.has_value() == sf::Shader::isAvailable());
if (vertexShader)
CHECK(static_cast<bool>(vertexShader->getNativeHandle()) == sf::Shader::isAvailable());
const auto fragmentShader = sf::Shader::loadFromFile("Graphics/shader.frag", sf::Shader::Type::Fragment);
CHECK(fragmentShader.has_value() == sf::Shader::isAvailable());
if (fragmentShader)
CHECK(static_cast<bool>(fragmentShader->getNativeHandle()) == sf::Shader::isAvailable());
}
SECTION("Two shaders")
{
CHECK(!sf::Shader::loadFromFile("does-not-exist.vert", "Graphics/shader.frag"));
CHECK(!sf::Shader::loadFromFile("Graphics/shader.vert", "does-not-exist.frag"));
const auto shader = sf::Shader::loadFromFile("Graphics/shader.vert", "Graphics/shader.frag");
CHECK(shader.has_value() == sf::Shader::isAvailable());
if (shader)
CHECK(static_cast<bool>(shader->getNativeHandle()) == sf::Shader::isAvailable());
}
SECTION("Three shaders")
{
CHECK(!sf::Shader::loadFromFile("does-not-exist.vert", "Graphics/shader.geom", "Graphics/shader.frag"));
CHECK(!sf::Shader::loadFromFile("Graphics/shader.vert", "does-not-exist.geom", "Graphics/shader.frag"));
CHECK(!sf::Shader::loadFromFile("Graphics/shader.vert", "Graphics/shader.geom", "does-not-exist.frag"));
const auto shader = sf::Shader::loadFromFile("Graphics/shader.vert",
"Graphics/shader.geom",
"Graphics/shader.frag");
CHECK(shader.has_value() == sf::Shader::isGeometryAvailable());
if (shader)
CHECK(static_cast<bool>(shader->getNativeHandle()) == sf::Shader::isGeometryAvailable());
}
}
SECTION("loadFromMemory()")
{
CHECK(sf::Shader::loadFromMemory(vertexSource, sf::Shader::Type::Vertex).has_value() == sf::Shader::isAvailable());
CHECK(!sf::Shader::loadFromMemory(geometrySource, sf::Shader::Type::Geometry));
CHECK(sf::Shader::loadFromMemory(fragmentSource, sf::Shader::Type::Fragment).has_value() ==
sf::Shader::isAvailable());
CHECK(sf::Shader::loadFromMemory(vertexSource, fragmentSource).has_value() == sf::Shader::isAvailable());
const auto shader = sf::Shader::loadFromMemory(vertexSource, geometrySource, fragmentSource);
CHECK(shader.has_value() == sf::Shader::isGeometryAvailable());
if (shader)
CHECK(static_cast<bool>(shader->getNativeHandle()) == sf::Shader::isAvailable());
}
SECTION("loadFromStream()")
{
auto vertexShaderStream = sf::FileInputStream::open("Graphics/shader.vert").value();
auto fragmentShaderStream = sf::FileInputStream::open("Graphics/shader.frag").value();
auto geometryShaderStream = sf::FileInputStream::open("Graphics/shader.geom").value();
auto emptyStream = sf::FileInputStream::open("Graphics/invalid_shader.vert").value();
2024-04-12 00:29:03 +08:00
SECTION("One shader")
{
CHECK(!sf::Shader::loadFromStream(emptyStream, sf::Shader::Type::Vertex));
CHECK(sf::Shader::loadFromStream(vertexShaderStream, sf::Shader::Type::Vertex).has_value() ==
sf::Shader::isAvailable());
CHECK(sf::Shader::loadFromStream(fragmentShaderStream, sf::Shader::Type::Fragment).has_value() ==
sf::Shader::isAvailable());
}
SECTION("Two shaders")
{
CHECK(!sf::Shader::loadFromStream(emptyStream, fragmentShaderStream));
CHECK(!sf::Shader::loadFromStream(vertexShaderStream, emptyStream));
CHECK(sf::Shader::loadFromStream(vertexShaderStream, fragmentShaderStream).has_value() ==
sf::Shader::isAvailable());
}
SECTION("Three shaders")
{
CHECK(!sf::Shader::loadFromStream(emptyStream, geometryShaderStream, fragmentShaderStream));
CHECK(!sf::Shader::loadFromStream(vertexShaderStream, emptyStream, fragmentShaderStream));
CHECK(!sf::Shader::loadFromStream(vertexShaderStream, geometryShaderStream, emptyStream));
const auto shader = sf::Shader::loadFromStream(vertexShaderStream, geometryShaderStream, fragmentShaderStream);
CHECK(shader.has_value() == sf::Shader::isGeometryAvailable());
if (shader)
CHECK(static_cast<bool>(shader->getNativeHandle()) == sf::Shader::isGeometryAvailable());
}
}
}