Added support for user defined sound effect implementations.

This commit is contained in:
binary1248 2024-05-04 17:50:59 +02:00 committed by Chris Thrasher
parent c89c32d7ba
commit 002b8953fa
7 changed files with 800 additions and 23 deletions

View File

@ -19,6 +19,7 @@ namespace
constexpr auto windowWidth = 800u;
constexpr auto windowHeight = 600u;
constexpr auto pi = 3.14159265359f;
constexpr auto sqrt2 = 2.0f * 0.707106781186547524401f;
std::filesystem::path resourcesDir()
{
@ -86,7 +87,7 @@ protected:
private:
// Virtual functions to be implemented in derived effects
virtual void onUpdate(float time, float x, float y) = 0;
virtual void onDraw(sf::RenderTarget& target, const sf::RenderStates& states) const = 0;
virtual void onDraw(sf::RenderTarget& target, sf::RenderStates states) const = 0;
virtual void onStart() = 0;
virtual void onStop() = 0;
@ -129,7 +130,7 @@ public:
m_music.setPosition({m_position.x, m_position.y, 0.f});
}
void onDraw(sf::RenderTarget& target, const sf::RenderStates& states) const override
void onDraw(sf::RenderTarget& target, sf::RenderStates states) const override
{
auto statesCopy(states);
statesCopy.transform = sf::Transform::Identity;
@ -203,7 +204,7 @@ public:
m_volumeText.setString("Volume: " + std::to_string(m_volume));
}
void onDraw(sf::RenderTarget& target, const sf::RenderStates& states) const override
void onDraw(sf::RenderTarget& target, sf::RenderStates states) const override
{
target.draw(m_pitchText, states);
target.draw(m_volumeText, states);
@ -306,7 +307,7 @@ public:
m_music.setPosition({m_position.x, m_position.y, 0.f});
}
void onDraw(sf::RenderTarget& target, const sf::RenderStates& states) const override
void onDraw(sf::RenderTarget& target, sf::RenderStates states) const override
{
auto statesCopy(states);
@ -376,7 +377,7 @@ public:
m_currentFrequency.setString("Frequency: " + std::to_string(m_frequency) + " Hz");
}
void onDraw(sf::RenderTarget& target, const sf::RenderStates& states) const override
void onDraw(sf::RenderTarget& target, sf::RenderStates states) const override
{
target.draw(m_instruction, states);
target.draw(m_currentType, states);
@ -548,7 +549,7 @@ public:
setDopplerFactor(m_factor);
}
void onDraw(sf::RenderTarget& target, const sf::RenderStates& states) const override
void onDraw(sf::RenderTarget& target, sf::RenderStates states) const override
{
auto statesCopy(states);
statesCopy.transform = sf::Transform::Identity;
@ -616,6 +617,425 @@ private:
};
////////////////////////////////////////////////////////////
// Processing base class
////////////////////////////////////////////////////////////
class Processing : public Effect
{
public:
void onUpdate([[maybe_unused]] float time, float x, float y) override
{
m_position = {windowWidth * x - 10.f, windowHeight * y - 10.f};
m_music.setPosition({m_position.x, m_position.y, 0.f});
}
void onDraw(sf::RenderTarget& target, sf::RenderStates states) const override
{
auto statesCopy(states);
statesCopy.transform = sf::Transform::Identity;
statesCopy.transform.translate(m_position);
target.draw(m_listener, states);
target.draw(m_soundShape, statesCopy);
target.draw(m_enabledText);
target.draw(m_instructions);
}
void onStart() override
{
// Synchronize listener audio position with graphical position
sf::Listener::setPosition({m_listener.getPosition().x, m_listener.getPosition().y, 0.f});
m_music.play();
}
void onStop() override
{
m_music.stop();
}
protected:
Processing(std::string name) :
Effect(std::move(name)),
m_enabledText(getFont(), "Processing: Enabled"),
m_instructions(getFont(), "Press Space to enable/disable processing")
{
m_listener.setPosition({(windowWidth - 20.f) / 2.f, (windowHeight - 20.f) / 2.f});
m_listener.setFillColor(sf::Color::Red);
m_enabledText.setPosition({windowWidth / 2.f - 120.f, windowHeight * 3.f / 4.f - 50.f});
m_instructions.setPosition({windowWidth / 2.f - 250.f, windowHeight * 3.f / 4.f});
// Load the music file
if (!m_music.openFromFile(resourcesDir() / "doodle_pop.ogg"))
std::cerr << "Failed to load " << (resourcesDir() / "doodle_pop.ogg").string() << std::endl;
// Set the music to loop
m_music.setLoop(true);
// Set attenuation to a nice value
m_music.setAttenuation(0.0f);
}
sf::Music& getMusic()
{
return m_music;
}
const std::shared_ptr<bool>& getEnabled() const
{
return m_enabled;
}
private:
void onKey(sf::Keyboard::Key key) override
{
if (key == sf::Keyboard::Key::Space)
*m_enabled = !*m_enabled;
m_enabledText.setString(*m_enabled ? "Processing: Enabled" : "Processing: Disabled");
}
sf::CircleShape m_listener{20.f};
sf::CircleShape m_soundShape{20.f};
sf::Vector2f m_position;
sf::Music m_music;
std::shared_ptr<bool> m_enabled{std::make_shared<bool>(true)};
sf::Text m_enabledText;
sf::Text m_instructions;
};
////////////////////////////////////////////////////////////
// Biquad Filter (https://github.com/dimtass/DSP-Cpp-filters)
////////////////////////////////////////////////////////////
class BiquadFilter : public Processing
{
protected:
struct Coefficients
{
float a0{};
float a1{};
float a2{};
float b1{};
float b2{};
float c0{};
float d0{};
};
using Processing::Processing;
void setCoefficients(const Coefficients& coefficients)
{
auto& music = getMusic();
struct State
{
float xnz1{};
float xnz2{};
float ynz1{};
float ynz2{};
};
// We use a mutable lambda to tie the lifetime of the state and coefficients to the lambda itself
// This is necessary since the Echo object will be destroyed before the Music object
// While the Music object exists, it is possible that the audio engine will try to call
// this lambda hence we need to always have usable coefficients and state until the Music and the
// associated lambda are destroyed
music.setEffectProcessor(
[coefficients,
enabled = getEnabled(),
state = std::vector<State>(music.getChannelCount())](const float* inputFrames,
unsigned int& inputFrameCount,
float* outputFrames,
unsigned int& outputFrameCount,
unsigned int frameChannelCount) mutable
{
for (auto frame = 0u; frame < outputFrameCount; ++frame)
{
for (auto channel = 0u; channel < frameChannelCount; ++channel)
{
auto& channelState = state[channel];
const auto xn = inputFrames ? inputFrames[channel] : 0.f; // Read silence if no input data available
const auto yn = coefficients.a0 * xn + coefficients.a1 * channelState.xnz1 +
coefficients.a2 * channelState.xnz2 - coefficients.b1 * channelState.ynz1 -
coefficients.b2 * channelState.ynz2;
channelState.xnz2 = channelState.xnz1;
channelState.xnz1 = xn;
channelState.ynz2 = channelState.ynz1;
channelState.ynz1 = yn;
outputFrames[channel] = *enabled ? yn : xn;
}
inputFrames += (inputFrames ? frameChannelCount : 0u);
outputFrames += frameChannelCount;
}
// We processed data 1:1
inputFrameCount = outputFrameCount;
});
}
};
////////////////////////////////////////////////////////////
// High-pass Filter (https://github.com/dimtass/DSP-Cpp-filters)
////////////////////////////////////////////////////////////
struct HighPassFilter : BiquadFilter
{
HighPassFilter() : BiquadFilter("High-pass Filter")
{
static constexpr auto cutoffFrequency = 2000.f;
const auto c = std::tan(pi * cutoffFrequency / static_cast<float>(getMusic().getSampleRate()));
Coefficients coefficients;
coefficients.a0 = 1.f / (1.f + sqrt2 * c + std::pow(c, 2.f));
coefficients.a1 = -2.f * coefficients.a0;
coefficients.a2 = coefficients.a0;
coefficients.b1 = 2.f * coefficients.a0 * (std::pow(c, 2.f) - 1.f);
coefficients.b2 = coefficients.a0 * (1.f - sqrt2 * c + std::pow(c, 2.f));
setCoefficients(coefficients);
}
};
////////////////////////////////////////////////////////////
// Low-pass Filter (https://github.com/dimtass/DSP-Cpp-filters)
////////////////////////////////////////////////////////////
struct LowPassFilter : BiquadFilter
{
LowPassFilter() : BiquadFilter("Low-pass Filter")
{
static constexpr auto cutoffFrequency = 500.f;
const auto c = 1.f / std::tan(pi * cutoffFrequency / static_cast<float>(getMusic().getSampleRate()));
Coefficients coefficients;
coefficients.a0 = 1.f / (1.f + sqrt2 * c + std::pow(c, 2.f));
coefficients.a1 = 2.f * coefficients.a0;
coefficients.a2 = coefficients.a0;
coefficients.b1 = 2.f * coefficients.a0 * (1.f - std::pow(c, 2.f));
coefficients.b2 = coefficients.a0 * (1.f - sqrt2 * c + std::pow(c, 2.f));
setCoefficients(coefficients);
}
};
////////////////////////////////////////////////////////////
// Echo (miniaudio implementation)
////////////////////////////////////////////////////////////
struct Echo : Processing
{
Echo() : Processing("Echo")
{
auto& music = getMusic();
static constexpr auto delay = 0.2f;
static constexpr auto decay = 0.75f;
static constexpr auto wet = 0.8f;
static constexpr auto dry = 1.f;
const auto channelCount = music.getChannelCount();
const auto sampleRate = music.getSampleRate();
const auto delayInFrames = static_cast<unsigned int>(static_cast<float>(sampleRate) * delay);
// We use a mutable lambda to tie the lifetime of the state to the lambda itself
// This is necessary since the Echo object will be destroyed before the Music object
// While the Music object exists, it is possible that the audio engine will try to call
// this lambda hence we need to always have a usable state until the Music and the
// associated lambda are destroyed
music.setEffectProcessor(
[delayInFrames,
enabled = getEnabled(),
buffer = std::vector<float>(delayInFrames * channelCount, 0.f),
cursor = 0u](const float* inputFrames,
unsigned int& inputFrameCount,
float* outputFrames,
unsigned int& outputFrameCount,
unsigned int frameChannelCount) mutable
{
for (auto frame = 0u; frame < outputFrameCount; ++frame)
{
for (auto channel = 0u; channel < frameChannelCount; ++channel)
{
const auto input = inputFrames ? inputFrames[channel] : 0.f; // Read silence if no input data available
const auto bufferIndex = (cursor * frameChannelCount) + channel;
buffer[bufferIndex] = (buffer[bufferIndex] * decay) + (input * dry);
outputFrames[channel] = *enabled ? buffer[bufferIndex] * wet : input;
}
cursor = (cursor + 1) % delayInFrames;
inputFrames += (inputFrames ? frameChannelCount : 0u);
outputFrames += frameChannelCount;
}
// We processed data 1:1
inputFrameCount = outputFrameCount;
});
}
};
////////////////////////////////////////////////////////////
// Reverb (https://github.com/sellicott/DSP-FFMpeg-Reverb)
////////////////////////////////////////////////////////////
class Reverb : public Processing
{
public:
Reverb() : Processing("Reverb")
{
auto& music = getMusic();
static constexpr auto sustain = 0.7f; // [0.f; 1.f]
const auto channelCount = music.getChannelCount();
const auto sampleRate = music.getSampleRate();
std::vector<ReverbFilter<float>> filters;
filters.reserve(channelCount);
for (auto i = 0u; i < channelCount; ++i)
filters.emplace_back(sampleRate, sustain);
// We use a mutable lambda to tie the lifetime of the state to the lambda itself
// This is necessary since the Echo object will be destroyed before the Music object
// While the Music object exists, it is possible that the audio engine will try to call
// this lambda hence we need to always have a usable state until the Music and the
// associated lambda are destroyed
music.setEffectProcessor(
[filters, enabled = getEnabled()](const float* inputFrames,
unsigned int& inputFrameCount,
float* outputFrames,
unsigned int& outputFrameCount,
unsigned int frameChannelCount) mutable
{
for (auto frame = 0u; frame < outputFrameCount; ++frame)
{
for (auto channel = 0u; channel < frameChannelCount; ++channel)
{
const auto input = inputFrames ? inputFrames[channel] : 0.f; // Read silence if no input data available
outputFrames[channel] = *enabled ? filters[channel](input) : input;
}
inputFrames += (inputFrames ? frameChannelCount : 0u);
outputFrames += frameChannelCount;
}
// We processed data 1:1
inputFrameCount = outputFrameCount;
});
}
private:
template <typename T>
class AllPassFilter
{
public:
AllPassFilter(std::size_t delay, float theGain) : m_buffer(delay, {}), m_gain(theGain)
{
}
T operator()(T input)
{
const auto output = m_buffer[m_cursor];
input = static_cast<T>(input + m_gain * output);
m_buffer[m_cursor] = input;
m_cursor = (m_cursor + 1) % m_buffer.size();
return static_cast<T>(-m_gain * input + output);
}
private:
std::vector<T> m_buffer;
std::size_t m_cursor{};
const float m_gain{};
};
template <typename T>
class FIRFilter
{
public:
FIRFilter(std::vector<float> taps) : m_taps(std::move(taps))
{
}
T operator()(T input)
{
m_buffer[m_cursor] = input;
m_cursor = (m_cursor + 1) % m_buffer.size();
T output{};
for (auto i = 0u; i < m_taps.size(); ++i)
output += static_cast<T>(m_taps[i] * m_buffer[(m_cursor + i) % m_buffer.size()]);
return output;
}
private:
const std::vector<float> m_taps;
std::vector<T> m_buffer = std::vector<T>(m_taps.size(), {});
std::size_t m_cursor{};
};
template <typename T>
class ReverbFilter
{
public:
ReverbFilter(unsigned int sampleRate, float feedbackGain) :
m_allPass{{sampleRate / 10, 0.6f}, {sampleRate / 30, -0.6f}, {sampleRate / 90, 0.6f}, {sampleRate / 270, -0.6f}},
m_fir({0.003369f, 0.002810f, 0.001758f, 0.000340f, -0.001255f, -0.002793f, -0.004014f, -0.004659f,
-0.004516f, -0.003464f, -0.001514f, 0.001148f, 0.004157f, 0.006986f, 0.009003f, 0.009571f,
0.008173f, 0.004560f, -0.001120f, -0.008222f, -0.015581f, -0.021579f, -0.024323f, -0.021933f,
-0.012904f, 0.003500f, 0.026890f, 0.055537f, 0.086377f, 0.115331f, 0.137960f, 0.150407f,
0.150407f, 0.137960f, 0.115331f, 0.086377f, 0.055537f, 0.026890f, 0.003500f, -0.012904f,
-0.021933f, -0.024323f, -0.021579f, -0.015581f, -0.008222f, -0.001120f, 0.004560f, 0.008173f,
0.009571f, 0.009003f, 0.006986f, 0.004157f, 0.001148f, -0.001514f, -0.003464f, -0.004516f,
-0.004659f, -0.004014f, -0.002793f, -0.001255f, 0.000340f, 0.001758f, 0.002810f, 0.003369f}),
m_buffer(sampleRate / 5, {}), // sample rate / 5 = 200ms buffer size
m_feedbackGain(feedbackGain)
{
}
T operator()(T input)
{
auto output = static_cast<T>(0.7f * input + m_feedbackGain * m_buffer[m_cursor]);
for (auto& f : m_allPass)
output = f(output);
output = m_fir(output);
m_buffer[m_cursor] = output;
m_cursor = (m_cursor + 1) % m_buffer.size();
output += 0.5f * m_buffer[(m_cursor + 1 * m_interval - 1) % m_buffer.size()];
output += 0.25f * m_buffer[(m_cursor + 2 * m_interval - 1) % m_buffer.size()];
output += 0.125f * m_buffer[(m_cursor + 3 * m_interval - 1) % m_buffer.size()];
return 0.6f * output + input;
}
private:
AllPassFilter<T> m_allPass[4];
FIRFilter<T> m_fir;
std::vector<T> m_buffer;
std::size_t m_cursor{};
const std::size_t m_interval{m_buffer.size() / 3};
const float m_feedbackGain{};
};
};
////////////////////////////////////////////////////////////
/// Entry point of application
///
@ -642,14 +1062,20 @@ int main()
Attenuation attenuationEffect;
Tone toneEffect;
Doppler dopplerEffect;
HighPassFilter highPassFilterEffect;
LowPassFilter lowPassFilterEffect;
Echo echoEffect;
Reverb reverbEffect;
const std::array<Effect*, 5> effects{
&surroundEffect,
const std::array<Effect*, 9> effects{&surroundEffect,
&pitchVolumeEffect,
&attenuationEffect,
&toneEffect,
&dopplerEffect,
};
&highPassFilterEffect,
&lowPassFilterEffect,
&echoEffect,
&reverbEffect};
std::size_t current = 0;

View File

@ -162,6 +162,17 @@ public:
////////////////////////////////////////////////////////////
void setPlayingOffset(Time timeOffset);
////////////////////////////////////////////////////////////
/// \brief Set the effect processor to be applied to the sound
///
/// The effect processor is a callable that will be called
/// with sound data to be processed.
///
/// \param effectProcessor The effect processor to attach to this sound, attach an empty processor to disable processing
///
////////////////////////////////////////////////////////////
void setEffectProcessor(EffectProcessor effectProcessor) override;
////////////////////////////////////////////////////////////
/// \brief Get the audio buffer attached to the sound
///

View File

@ -34,6 +34,8 @@
#include <SFML/System/Angle.hpp>
#include <SFML/System/Vector3.hpp>
#include <functional>
namespace sf
{
@ -74,6 +76,76 @@ public:
float outerGain{}; //!< Outer gain
};
////////////////////////////////////////////////////////////
/// \brief Callable that is provided with sound data for processing
///
/// When the audio engine sources sound data from sound
/// sources it will pass the data through an effects
/// processor if one is set. The sound data will already be
/// converted to the internal floating point format.
///
/// Sound data that is processed this way is provided in
/// frames. Each frame contains 1 floating point sample per
/// channel. If e.g. the data source provides stereo data,
/// each frame will contain 2 floats.
///
/// The effects processor function takes 4 parameters:
/// - The input data frames, channels interleaved
/// - The number of input data frames available
/// - The buffer to write output data frames to, channels interleaved
/// - The number of output data frames that the output buffer can hold
/// - The channel count
///
/// The input and output frame counts are in/out parameters.
///
/// When this function is called, the input count will
/// contain the number of frames available in the input
/// buffer. The output count will contain the size of the
/// output buffer i.e. the maximum number of frames that
/// can be written to the output buffer.
///
/// Attempting to read more frames than the input frame
/// count or write more frames than the output frame count
/// will result in undefined behaviour.
///
/// When done processing the frames, the input and output
/// frame counts must be updated to reflect the actual
/// number of frames that were read from the input and
/// written to the output.
///
/// The processing function should always try to process as
/// much sound data as possible i.e. always try to fill the
/// output buffer to the maximum. In certain situations for
/// specific effects it can be possible that the input frame
/// count and output frame count aren't equal. As long as
/// the frame counts are updated accordingly this is
/// perfectly valid.
///
/// If the audio engine determines that no audio data is
/// available from the data source, the input data frames
/// pointer is set to nullptr and the input frame count is
/// set to 0. In this case it is up to the function to
/// decide how to handle the situation. For specific effects
/// e.g. Echo/Delay buffered data might still be able to be
/// written to the output buffer even if there is no longer
/// any input data.
///
/// An important thing to remember is that this function is
/// directly called by the audio engine. Because the audio
/// engine runs on an internal thread of its own, make sure
/// access to shared data is synchronized appropriately.
///
/// Because this function is stored by the SoundSource
/// object it will be able to be called as long as the
/// SoundSource object hasn't yet been destroyed. Make sure
/// that any data this function references outlives the
/// SoundSource object otherwise use-after-free errors will
/// occur.
///
////////////////////////////////////////////////////////////
using EffectProcessor = std::function<
void(const float* inputFrames, unsigned int& inputFrameCount, float* outputFrames, unsigned int& outputFrameCount, unsigned int frameChannelCount)>;
////////////////////////////////////////////////////////////
/// \brief Copy constructor
///
@ -331,6 +403,17 @@ public:
////////////////////////////////////////////////////////////
void setAttenuation(float attenuation);
////////////////////////////////////////////////////////////
/// \brief Set the effect processor to be applied to the sound
///
/// The effect processor is a callable that will be called
/// with sound data to be processed.
///
/// \param effectProcessor The effect processor to attach to this sound, attach an empty processor to disable processing
///
////////////////////////////////////////////////////////////
virtual void setEffectProcessor(EffectProcessor effectProcessor);
////////////////////////////////////////////////////////////
/// \brief Get the pitch of the sound
///

View File

@ -194,6 +194,17 @@ public:
////////////////////////////////////////////////////////////
bool getLoop() const;
////////////////////////////////////////////////////////////
/// \brief Set the effect processor to be applied to the sound
///
/// The effect processor is a callable that will be called
/// with sound data to be processed.
///
/// \param effectProcessor The effect processor to attach to this sound, attach an empty processor to disable processing
///
////////////////////////////////////////////////////////////
void setEffectProcessor(EffectProcessor effectProcessor) override;
protected:
////////////////////////////////////////////////////////////
/// \brief Default constructor

View File

@ -55,6 +55,7 @@ struct Sound::Impl
~Impl()
{
ma_sound_uninit(&sound);
ma_node_uninit(&effectNode, nullptr);
ma_data_source_uninit(&dataSourceBase);
}
@ -90,6 +91,34 @@ struct Sound::Impl
return;
}
// Initialize the custom effect node
effectNodeVTable.onProcess =
[](ma_node* node, const float** framesIn, ma_uint32* frameCountIn, float** framesOut, ma_uint32* frameCountOut)
{ static_cast<EffectNode*>(node)->impl->processEffect(framesIn, *frameCountIn, framesOut, *frameCountOut); };
effectNodeVTable.onGetRequiredInputFrameCount = nullptr;
effectNodeVTable.inputBusCount = 1;
effectNodeVTable.outputBusCount = 1;
effectNodeVTable.flags = MA_NODE_FLAG_CONTINUOUS_PROCESSING | MA_NODE_FLAG_ALLOW_NULL_INPUT;
const auto nodeChannelCount = ma_engine_get_channels(engine);
ma_node_config nodeConfig = ma_node_config_init();
nodeConfig.vtable = &effectNodeVTable;
nodeConfig.pInputChannels = &nodeChannelCount;
nodeConfig.pOutputChannels = &nodeChannelCount;
if (const ma_result result = ma_node_init(ma_engine_get_node_graph(engine), &nodeConfig, nullptr, &effectNode);
result != MA_SUCCESS)
{
err() << "Failed to initialize effect node: " << ma_result_description(result) << std::endl;
return;
}
effectNode.impl = this;
effectNode.channelCount = nodeChannelCount;
// Route the sound through the effect node depending on whether an effect processor is set
connectEffect(bool{effectProcessor});
// Because we are providing a custom data source, we have to provide the channel map ourselves
if (buffer && !buffer->getChannelMap().empty())
{
@ -110,7 +139,80 @@ struct Sound::Impl
void reinitialize()
{
priv::MiniaudioUtils::reinitializeSound(sound, [this] { initialize(); });
priv::MiniaudioUtils::reinitializeSound(sound,
[this]
{
ma_node_uninit(&effectNode, nullptr);
initialize();
});
}
void processEffect(const float** framesIn, ma_uint32& frameCountIn, float** framesOut, ma_uint32& frameCountOut) const
{
// If a processor is set, call it
if (effectProcessor)
{
if (!framesIn)
frameCountIn = 0;
effectProcessor(framesIn ? framesIn[0] : nullptr, frameCountIn, framesOut[0], frameCountOut, effectNode.channelCount);
return;
}
// Otherwise just pass the data through 1:1
if (framesIn == nullptr)
{
frameCountIn = 0;
frameCountOut = 0;
return;
}
const auto toProcess = std::min(frameCountIn, frameCountOut);
std::memcpy(framesOut[0], framesIn[0], toProcess * effectNode.channelCount * sizeof(float));
frameCountIn = toProcess;
frameCountOut = toProcess;
}
void connectEffect(bool connect)
{
auto* engine = priv::AudioDevice::getEngine();
if (engine == nullptr)
{
err() << "Failed to connect effect: No engine available" << std::endl;
return;
}
if (connect)
{
// Attach the custom effect node output to our engine endpoint
if (const ma_result result = ma_node_attach_output_bus(&effectNode, 0, ma_engine_get_endpoint(engine), 0);
result != MA_SUCCESS)
{
err() << "Failed to attach effect node output to endpoint: " << ma_result_description(result) << std::endl;
return;
}
}
else
{
// Detach the custom effect node output from our engine endpoint
if (const ma_result result = ma_node_detach_output_bus(&effectNode, 0); result != MA_SUCCESS)
{
err() << "Failed to detach effect node output from endpoint: " << ma_result_description(result)
<< std::endl;
return;
}
}
// Attach the sound output to the custom effect node or the engine endpoint
if (const ma_result
result = ma_node_attach_output_bus(&sound, 0, connect ? &effectNode : ma_engine_get_endpoint(engine), 0);
result != MA_SUCCESS)
{
err() << "Failed to attach sound node output to effect node: " << ma_result_description(result) << std::endl;
return;
}
}
static ma_result read(ma_data_source* dataSource, void* framesOut, ma_uint64 frameCount, ma_uint64* framesRead)
@ -208,13 +310,23 @@ struct Sound::Impl
////////////////////////////////////////////////////////////
// Member data
////////////////////////////////////////////////////////////
struct EffectNode
{
ma_node_base base{};
Impl* impl{};
ma_uint32 channelCount{};
};
ma_data_source_base dataSourceBase{}; //!< The struct that makes this object a miniaudio data source (must be first member)
ma_node_vtable effectNodeVTable{}; //!< Vtable of the effect node
EffectNode effectNode; //!< The engine node that performs effect processing
std::vector<ma_channel> soundChannelMap; //!< The map of position in sample frame to sound channel (miniaudio channels)
ma_sound sound{}; //!< The sound
std::size_t cursor{}; //!< The current playing position
bool looping{}; //!< True if we are looping the sound
const SoundBuffer* buffer{}; //!< Sound buffer bound to the source
Status status{Status::Stopped}; //!< The status
EffectProcessor effectProcessor; //!< The effect processor
};
@ -334,6 +446,14 @@ void Sound::setPlayingOffset(Time timeOffset)
}
////////////////////////////////////////////////////////////
void Sound::setEffectProcessor(EffectProcessor effectProcessor)
{
m_impl->effectProcessor = std::move(effectProcessor);
m_impl->connectEffect(bool{m_impl->effectProcessor});
}
////////////////////////////////////////////////////////////
const SoundBuffer& Sound::getBuffer() const
{

View File

@ -166,6 +166,13 @@ void SoundSource::setAttenuation(float attenuation)
}
////////////////////////////////////////////////////////////
// NOLINTNEXTLINE(performance-unnecessary-value-param)
void SoundSource::setEffectProcessor(EffectProcessor)
{
}
////////////////////////////////////////////////////////////
float SoundSource::getPitch() const
{

View File

@ -55,6 +55,7 @@ struct SoundStream::Impl
~Impl()
{
ma_sound_uninit(&sound);
ma_node_uninit(&effectNode, nullptr);
ma_data_source_uninit(&dataSourceBase);
}
@ -91,6 +92,34 @@ struct SoundStream::Impl
return;
}
// Initialize the custom effect node
effectNodeVTable.onProcess =
[](ma_node* node, const float** framesIn, ma_uint32* frameCountIn, float** framesOut, ma_uint32* frameCountOut)
{ static_cast<EffectNode*>(node)->impl->processEffect(framesIn, *frameCountIn, framesOut, *frameCountOut); };
effectNodeVTable.onGetRequiredInputFrameCount = nullptr;
effectNodeVTable.inputBusCount = 1;
effectNodeVTable.outputBusCount = 1;
effectNodeVTable.flags = MA_NODE_FLAG_CONTINUOUS_PROCESSING | MA_NODE_FLAG_ALLOW_NULL_INPUT;
const auto nodeChannelCount = ma_engine_get_channels(engine);
ma_node_config nodeConfig = ma_node_config_init();
nodeConfig.vtable = &effectNodeVTable;
nodeConfig.pInputChannels = &nodeChannelCount;
nodeConfig.pOutputChannels = &nodeChannelCount;
if (const ma_result result = ma_node_init(ma_engine_get_node_graph(engine), &nodeConfig, nullptr, &effectNode);
result != MA_SUCCESS)
{
err() << "Failed to initialize effect node: " << ma_result_description(result) << std::endl;
return;
}
effectNode.impl = this;
effectNode.channelCount = nodeChannelCount;
// Route the sound through the effect node depending on whether an effect processor is set
connectEffect(bool{effectProcessor});
// Because we are providing a custom data source, we have to provide the channel map ourselves
if (!channelMap.empty())
{
@ -111,7 +140,79 @@ struct SoundStream::Impl
void reinitialize()
{
priv::MiniaudioUtils::reinitializeSound(sound, [this] { initialize(); });
priv::MiniaudioUtils::reinitializeSound(sound,
[this]
{
ma_node_uninit(&effectNode, nullptr);
initialize();
});
}
void processEffect(const float** framesIn, ma_uint32& frameCountIn, float** framesOut, ma_uint32& frameCountOut) const
{
// If a processor is set, call it
if (effectProcessor)
{
if (!framesIn)
frameCountIn = 0;
effectProcessor(framesIn ? framesIn[0] : nullptr, frameCountIn, framesOut[0], frameCountOut, effectNode.channelCount);
return;
}
// Otherwise just pass the data through 1:1
if (framesIn == nullptr)
{
frameCountIn = 0;
frameCountOut = 0;
return;
}
const auto toProcess = std::min(frameCountIn, frameCountOut);
std::memcpy(framesOut[0], framesIn[0], toProcess * effectNode.channelCount * sizeof(float));
frameCountIn = toProcess;
frameCountOut = toProcess;
}
void connectEffect(bool connect)
{
auto* engine = priv::AudioDevice::getEngine();
if (engine == nullptr)
{
err() << "Failed to connect effect: No engine available" << std::endl;
return;
}
if (connect)
{
// Attach the custom effect node output to our engine endpoint
if (const ma_result result = ma_node_attach_output_bus(&effectNode, 0, ma_engine_get_endpoint(engine), 0);
result != MA_SUCCESS)
{
err() << "Failed to attach effect node output to endpoint: " << ma_result_description(result) << std::endl;
return;
}
}
else
{
// Detach the custom effect node output from our engine endpoint
if (const ma_result result = ma_node_detach_output_bus(&effectNode, 0); result != MA_SUCCESS)
{
err() << "Failed to detach effect node output from endpoint: " << ma_result_description(result)
<< std::endl;
return;
}
}
// Attach the sound output to the custom effect node or the engine endpoint
if (const ma_result
result = ma_node_attach_output_bus(&sound, 0, connect ? &effectNode : ma_engine_get_endpoint(engine), 0);
result != MA_SUCCESS)
{
err() << "Failed to attach sound node output to effect node: " << ma_result_description(result) << std::endl;
return;
}
}
static ma_result read(ma_data_source* dataSource, void* framesOut, ma_uint64 frameCount, ma_uint64* framesRead)
@ -238,8 +339,17 @@ struct SoundStream::Impl
////////////////////////////////////////////////////////////
// Member data
////////////////////////////////////////////////////////////
struct EffectNode
{
ma_node_base base{};
Impl* impl{};
ma_uint32 channelCount{};
};
ma_data_source_base dataSourceBase{}; //!< The struct that makes this object a miniaudio data source (must be first member)
SoundStream* const owner; //!< Owning SoundStream object
ma_node_vtable effectNodeVTable{}; //!< Vtable of the effect node
EffectNode effectNode; //!< The engine node that performs effect processing
std::vector<ma_channel> soundChannelMap; //!< The map of position in sample frame to sound channel (miniaudio channels)
ma_sound sound{}; //!< The sound
std::vector<std::int16_t> sampleBuffer; //!< Our temporary sample buffer
@ -251,6 +361,7 @@ struct SoundStream::Impl
bool loop{}; //!< Loop flag (true to loop, false to play once)
bool streaming{true}; //!< True if we are still streaming samples from the source
Status status{Status::Stopped}; //!< The status
EffectProcessor effectProcessor; //!< The effect processor
};
@ -395,6 +506,14 @@ bool SoundStream::getLoop() const
}
////////////////////////////////////////////////////////////
void SoundStream::setEffectProcessor(EffectProcessor effectProcessor)
{
m_impl->effectProcessor = std::move(effectProcessor);
m_impl->connectEffect(bool{m_impl->effectProcessor});
}
////////////////////////////////////////////////////////////
std::optional<std::uint64_t> SoundStream::onLoop()
{