Added example demonstrating sf::VertexBuffer, sf::Shader and sf::Thread usage.

This commit is contained in:
binary1248 2017-10-24 18:58:55 +02:00 committed by Lukas Dürrenberger
parent fe1407b6b5
commit d032050ccf
7 changed files with 937 additions and 0 deletions

View File

@ -23,6 +23,7 @@ else(SFML_OS_IOS)
add_subdirectory(joystick)
add_subdirectory(opengl)
add_subdirectory(shader)
add_subdirectory(island)
if(SFML_OS_WINDOWS)
add_subdirectory(win32)
elseif(SFML_OS_LINUX OR SFML_OS_FREEBSD)

View File

@ -0,0 +1,11 @@
set(SRCROOT ${PROJECT_SOURCE_DIR}/examples/island)
# all source files
set(SRC ${SRCROOT}/Island.cpp)
# define the island target
sfml_add_example(island GUI_APP
SOURCES ${SRC}
DEPENDS sfml-graphics sfml-window sfml-system
RESOURCES_DIR resources)

590
examples/island/Island.cpp Normal file
View File

@ -0,0 +1,590 @@
////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#define STB_PERLIN_IMPLEMENTATION
#include "stb_perlin.h"
#include <SFML/Graphics.hpp>
#include <vector>
#include <deque>
#include <sstream>
#include <algorithm>
#include <cstring>
#include <cmath>
namespace
{
// Width and height of the application window
const unsigned int windowWidth = 800;
const unsigned int windowHeight = 600;
// Resolution of the generated terrain
const unsigned int resolutionX = 800;
const unsigned int resolutionY = 600;
// Thread pool parameters
const unsigned int threadCount = 4;
const unsigned int blockCount = 32;
struct WorkItem
{
sf::Vertex* targetBuffer;
unsigned int index;
};
std::deque<WorkItem> workQueue;
std::vector<sf::Thread*> threads;
int pendingWorkCount = 0;
bool workPending = true;
bool bufferUploadPending = false;
sf::Mutex workQueueMutex;
struct Setting
{
const char* name;
float* value;
};
// Terrain noise parameters
const int perlinOctaves = 3;
float perlinFrequency = 7.0f;
float perlinFrequencyBase = 4.0f;
// Terrain generation parameters
float heightBase = 0.0f;
float edgeFactor = 0.9f;
float edgeDropoffExponent = 1.5f;
float snowcapHeight = 0.6f;
// Terrain lighting parameters
float heightFactor = windowHeight / 2.0f;
float heightFlatten = 3.0f;
float lightFactor = 0.7f;
}
// Forward declarations of the functions we define further down
void threadFunction();
void generateTerrain(sf::Vertex* vertexBuffer);
////////////////////////////////////////////////////////////
/// Entry point of application
///
/// \return Application exit code
///
////////////////////////////////////////////////////////////
int main()
{
// Create the window of the application
sf::RenderWindow window(sf::VideoMode(windowWidth, windowHeight), "SFML Island",
sf::Style::Titlebar | sf::Style::Close);
window.setVerticalSyncEnabled(true);
sf::Font font;
if (!font.loadFromFile("resources/sansation.ttf"))
return EXIT_FAILURE;
// Create all of our graphics resources
sf::Text hudText;
sf::Text statusText;
sf::Shader terrainShader;
sf::RenderStates terrainStates(&terrainShader);
sf::VertexBuffer terrain(sf::Triangles, sf::VertexBuffer::Static);
// Set up our text drawables
statusText.setFont(font);
statusText.setCharacterSize(28);
statusText.setFillColor(sf::Color::White);
statusText.setOutlineColor(sf::Color::Black);
statusText.setOutlineThickness(2.0f);
hudText.setFont(font);
hudText.setCharacterSize(14);
hudText.setFillColor(sf::Color::White);
hudText.setOutlineColor(sf::Color::Black);
hudText.setOutlineThickness(2.0f);
hudText.setPosition(5.0f, 5.0f);
// Staging buffer for our terrain data that we will upload to our VertexBuffer
std::vector<sf::Vertex> terrainStagingBuffer;
// Check whether the prerequisites are suppprted
bool prerequisitesSupported = sf::VertexBuffer::isAvailable() && sf::Shader::isAvailable();
// Set up our graphics resources and set the status text accordingly
if (!prerequisitesSupported)
{
statusText.setString("Shaders and/or Vertex Buffers Unsupported");
}
else if (!terrainShader.loadFromFile("resources/terrain.vert", "resources/terrain.frag"))
{
prerequisitesSupported = false;
statusText.setString("Failed to load shader program");
}
else
{
// Start up our thread pool
for (unsigned int i = 0; i < threadCount; i++)
{
threads.push_back(new sf::Thread(threadFunction));
threads.back()->launch();
}
// Create our VertexBuffer with enough space to hold all the terrain geometry
terrain.create(resolutionX * resolutionY * 6);
// Resize the staging buffer to be able to hold all the terrain geometry
terrainStagingBuffer.resize(resolutionX * resolutionY * 6);
// Generate the initial terrain
generateTerrain(&terrainStagingBuffer[0]);
statusText.setString("Generating Terrain...");
}
// Center the status text
statusText.setPosition((windowWidth - statusText.getLocalBounds().width) / 2.f, (windowHeight - statusText.getLocalBounds().height) / 2.f);
// Set up an array of pointers to our settings for arrow navigation
Setting settings[] =
{
{"perlinFrequency", &perlinFrequency},
{"perlinFrequencyBase", &perlinFrequencyBase},
{"heightBase", &heightBase},
{"edgeFactor", &edgeFactor},
{"edgeDropoffExponent", &edgeDropoffExponent},
{"snowcapHeight", &snowcapHeight},
{"heightFactor", &heightFactor},
{"heightFlatten", &heightFlatten},
{"lightFactor", &lightFactor}
};
const int settingCount = 9;
int currentSetting = 0;
std::ostringstream osstr;
sf::Clock clock;
while (window.isOpen())
{
// Handle events
sf::Event event;
while (window.pollEvent(event))
{
// Window closed or escape key pressed: exit
if ((event.type == sf::Event::Closed) ||
((event.type == sf::Event::KeyPressed) && (event.key.code == sf::Keyboard::Escape)))
{
window.close();
break;
}
// Arrow key pressed:
if (prerequisitesSupported && (event.type == sf::Event::KeyPressed))
{
switch (event.key.code)
{
case sf::Keyboard::Return: generateTerrain(&terrainStagingBuffer[0]); break;
case sf::Keyboard::Down: currentSetting = (currentSetting + 1) % settingCount; break;
case sf::Keyboard::Up: currentSetting = (currentSetting + settingCount - 1) % settingCount; break;
case sf::Keyboard::Left: *(settings[currentSetting].value) -= 0.1f; break;
case sf::Keyboard::Right: *(settings[currentSetting].value) += 0.1f; break;
default: break;
}
}
}
// Clear, draw graphics objects and display
window.clear();
window.draw(statusText);
if (prerequisitesSupported)
{
{
sf::Lock lock(workQueueMutex);
// Don't bother updating/drawing the VertexBuffer while terrain is being regenerated
if (!pendingWorkCount)
{
// If there is new data pending to be uploaded to the VertexBuffer, do it now
if (bufferUploadPending)
{
terrain.update(&terrainStagingBuffer[0]);
bufferUploadPending = false;
}
terrainShader.setUniform("lightFactor", lightFactor);
window.draw(terrain, terrainStates);
}
}
// Update and draw the HUD text
osstr.str("");
osstr << "Frame: " << clock.restart().asMilliseconds() << "ms\n"
<< "perlinOctaves: " << perlinOctaves << "\n\n"
<< "Use the arrow keys to change the values.\nUse the return key to regenerate the terrain.\n\n";
for (int i = 0; i < settingCount; ++i)
osstr << ((i == currentSetting) ? ">> " : " ") << settings[i].name << ": " << *(settings[i].value) << "\n";
hudText.setString(osstr.str());
window.draw(hudText);
}
// Display things on screen
window.display();
}
// Shut down our thread pool
{
sf::Lock lock(workQueueMutex);
workPending = false;
}
while (!threads.empty())
{
threads.back()->wait();
delete threads.back();
threads.pop_back();
}
return EXIT_SUCCESS;
}
////////////////////////////////////////////////////////////
/// Get the terrain elevation at the given coordinates.
///
////////////////////////////////////////////////////////////
float getElevation(float x, float y)
{
x = x / resolutionX - 0.5f;
y = y / resolutionY - 0.5f;
float elevation = 0.0f;
for (int i = 0; i < perlinOctaves; i++)
{
elevation += stb_perlin_noise3(
x * perlinFrequency * std::pow(perlinFrequencyBase, i),
y * perlinFrequency * std::pow(perlinFrequencyBase, i),
0, 0, 0, 0
) * std::pow(perlinFrequencyBase, -i);
}
elevation = (elevation + 1.f) / 2.f;
float distance = 2.0f * std::sqrt(x * x + y * y);
elevation = (elevation + heightBase) * (1.0f - edgeFactor * std::pow(distance, edgeDropoffExponent));
elevation = std::min(std::max(elevation, 0.0f), 1.0f);
return elevation;
}
////////////////////////////////////////////////////////////
/// Get the terrain moisture at the given coordinates.
///
////////////////////////////////////////////////////////////
float getMoisture(float x, float y)
{
x = x / resolutionX - 0.5f;
y = y / resolutionY - 0.5f;
float moisture = stb_perlin_noise3(
x * 4.f + 0.5f,
y * 4.f + 0.5f,
0, 0, 0, 0
);
return (moisture + 1.f) / 2.f;
}
////////////////////////////////////////////////////////////
/// Get the lowlands terrain color for the given moisture.
///
////////////////////////////////////////////////////////////
sf::Color getLowlandsTerrainColor(float moisture)
{
sf::Color color =
moisture < 0.27f ? sf::Color(240, 240, 180) :
moisture < 0.3f ? sf::Color(240 - 240 * (moisture - 0.27f) / 0.03f, 240 - 40 * (moisture - 0.27f) / 0.03f, 180 - 180 * (moisture - 0.27f) / 0.03f) :
moisture < 0.4f ? sf::Color(0, 200, 0) :
moisture < 0.48f ? sf::Color(0, 200 - 40 * (moisture - 0.4f) / 0.08f, 0) :
moisture < 0.6f ? sf::Color(0, 160, 0) :
moisture < 0.7f ? sf::Color(34 * (moisture - 0.6f) / 0.1f, 160 - 60 * (moisture - 0.6f) / 0.1f, 34 * (moisture - 0.6f) / 0.1f) :
sf::Color(34, 100, 34);
return color;
}
////////////////////////////////////////////////////////////
/// Get the highlands terrain color for the given elevation
/// and moisture.
///
////////////////////////////////////////////////////////////
sf::Color getHighlandsTerrainColor(float elevation, float moisture)
{
sf::Color lowlandsColor = getLowlandsTerrainColor(moisture);
sf::Color color =
moisture < 0.6f ? sf::Color(112, 128, 144) :
sf::Color(112 + 110 * (moisture - 0.6f) / 0.4f, 128 + 56 * (moisture - 0.6f) / 0.4f, 144 - 9 * (moisture - 0.6f) / 0.4f);
float factor = std::min((elevation - 0.4f) / 0.1f, 1.f);
color.r = lowlandsColor.r * (1.f - factor) + color.r * factor;
color.g = lowlandsColor.g * (1.f - factor) + color.g * factor;
color.b = lowlandsColor.b * (1.f - factor) + color.b * factor;
return color;
}
////////////////////////////////////////////////////////////
/// Get the snowcap terrain color for the given elevation
/// and moisture.
///
////////////////////////////////////////////////////////////
sf::Color getSnowcapTerrainColor(float elevation, float moisture)
{
sf::Color highlandsColor = getHighlandsTerrainColor(elevation, moisture);
sf::Color color = sf::Color::White;
float factor = std::min((elevation - snowcapHeight) / 0.05f, 1.f);
color.r = highlandsColor.r * (1.f - factor) + color.r * factor;
color.g = highlandsColor.g * (1.f - factor) + color.g * factor;
color.b = highlandsColor.b * (1.f - factor) + color.b * factor;
return color;
}
////////////////////////////////////////////////////////////
/// Get the terrain color for the given elevation and
/// moisture.
///
////////////////////////////////////////////////////////////
sf::Color getTerrainColor(float elevation, float moisture)
{
sf::Color color =
elevation < 0.11f ? sf::Color(0, 0, elevation / 0.11f * 74.f + 181.0f) :
elevation < 0.14f ? sf::Color(std::pow((elevation - 0.11f) / 0.03f, 0.3f) * 48.f, std::pow((elevation - 0.11f) / 0.03f, 0.3f) * 48.f, 255) :
elevation < 0.16f ? sf::Color((elevation - 0.14f) * 128.f / 0.02f + 48.f, (elevation - 0.14f) * 128.f / 0.02f + 48.f, 127.0f + (0.16f - elevation) * 128.f / 0.02f) :
elevation < 0.17f ? sf::Color(240, 230, 140) :
elevation < 0.4f ? getLowlandsTerrainColor(moisture) :
elevation < snowcapHeight ? getHighlandsTerrainColor(elevation, moisture) :
getSnowcapTerrainColor(elevation, moisture);
return color;
}
////////////////////////////////////////////////////////////
/// Compute a compressed representation of the surface
/// normal based on the given coordinates, and the elevation
/// of the 4 adjacent neighbours.
///
////////////////////////////////////////////////////////////
sf::Vector2f computeNormal(int x, int y, float left, float right, float bottom, float top)
{
sf::Vector3f deltaX(1, 0, (std::pow(right, heightFlatten) - std::pow(left, heightFlatten)) * heightFactor);
sf::Vector3f deltaY(0, 1, (std::pow(top, heightFlatten) - std::pow(bottom, heightFlatten)) * heightFactor);
sf::Vector3f crossProduct(
deltaX.y * deltaY.z - deltaX.z * deltaY.y,
deltaX.z * deltaY.x - deltaX.x * deltaY.z,
deltaX.x * deltaY.y - deltaX.y * deltaY.x
);
// Scale cross product to make z component 1.0f so we can drop it
crossProduct /= crossProduct.z;
// Return "compressed" normal
return sf::Vector2f(crossProduct.x, crossProduct.y);
}
////////////////////////////////////////////////////////////
/// Process a terrain generation work item. Use the vector
/// of vertices as scratch memory and upload the data to
/// the vertex buffer when done.
///
////////////////////////////////////////////////////////////
void processWorkItem(std::vector<sf::Vertex>& vertices, const WorkItem& workItem)
{
unsigned int rowBlockSize = (resolutionY / blockCount) + 1;
unsigned int rowStart = rowBlockSize * workItem.index;
if (rowStart >= resolutionY)
return;
unsigned int rowEnd = std::min(rowStart + rowBlockSize, resolutionY);
unsigned int rowCount = rowEnd - rowStart;
const float scalingFactorX = static_cast<float>(windowWidth) / static_cast<float>(resolutionX);
const float scalingFactorY = static_cast<float>(windowHeight) / static_cast<float>(resolutionY);
for (unsigned int y = rowStart; y < rowEnd; y++)
{
for (int x = 0; x < resolutionX; x++)
{
int arrayIndexBase = ((y - rowStart) * resolutionX + x) * 6;
// Top left corner (first triangle)
if (x > 0)
{
vertices[arrayIndexBase + 0] = vertices[arrayIndexBase - 6 + 5];
}
else if (y > rowStart)
{
vertices[arrayIndexBase + 0] = vertices[arrayIndexBase - resolutionX * 6 + 1];
}
else
{
vertices[arrayIndexBase + 0].position = sf::Vector2f(x * scalingFactorX, y * scalingFactorY);
vertices[arrayIndexBase + 0].color = getTerrainColor(getElevation(x, y), getMoisture(x, y));
vertices[arrayIndexBase + 0].texCoords = computeNormal(x, y, getElevation(x - 1, y), getElevation(x + 1, y), getElevation(x, y + 1), getElevation(x, y - 1));
}
// Bottom left corner (first triangle)
if (x > 0)
{
vertices[arrayIndexBase + 1] = vertices[arrayIndexBase - 6 + 2];
}
else
{
vertices[arrayIndexBase + 1].position = sf::Vector2f(x * scalingFactorX, (y + 1) * scalingFactorY);
vertices[arrayIndexBase + 1].color = getTerrainColor(getElevation(x, y + 1), getMoisture(x, y + 1));
vertices[arrayIndexBase + 1].texCoords = computeNormal(x, y + 1, getElevation(x - 1, y + 1), getElevation(x + 1, y + 1), getElevation(x, y + 2), getElevation(x, y));
}
// Bottom right corner (first triangle)
vertices[arrayIndexBase + 2].position = sf::Vector2f((x + 1) * scalingFactorX, (y + 1) * scalingFactorY);
vertices[arrayIndexBase + 2].color = getTerrainColor(getElevation(x + 1, y + 1), getMoisture(x + 1, y + 1));
vertices[arrayIndexBase + 2].texCoords = computeNormal(x + 1, y + 1, getElevation(x, y + 1), getElevation(x + 2, y + 1), getElevation(x + 1, y + 2), getElevation(x + 1, y));
// Top left corner (second triangle)
vertices[arrayIndexBase + 3] = vertices[arrayIndexBase + 0];
// Bottom right corner (second triangle)
vertices[arrayIndexBase + 4] = vertices[arrayIndexBase + 2];
// Top right corner (second triangle)
if (y > rowStart)
{
vertices[arrayIndexBase + 5] = vertices[arrayIndexBase - resolutionX * 6 + 2];
}
else
{
vertices[arrayIndexBase + 5].position = sf::Vector2f((x + 1) * scalingFactorX, y * scalingFactorY);
vertices[arrayIndexBase + 5].color = getTerrainColor(getElevation(x + 1, y), getMoisture(x + 1, y));
vertices[arrayIndexBase + 5].texCoords = computeNormal(x + 1, y, getElevation(x, y), getElevation(x + 2, y), getElevation(x + 1, y + 1), getElevation(x + 1, y - 1));
}
}
}
// Copy the resulting geometry from our thread-local buffer into the target buffer
std::memcpy(workItem.targetBuffer + (resolutionX * rowStart * 6), &vertices[0], sizeof(sf::Vertex) * resolutionX * rowCount * 6);
}
////////////////////////////////////////////////////////////
/// Worker thread entry point. We use a thread pool to avoid
/// the heavy cost of constantly recreating and starting
/// new threads whenever we need to regenerate the terrain.
///
////////////////////////////////////////////////////////////
void threadFunction()
{
unsigned int rowBlockSize = (resolutionY / blockCount) + 1;
std::vector<sf::Vertex> vertices(resolutionX * rowBlockSize * 6);
WorkItem workItem = {0, 0};
// Loop until the application exits
for (;;)
{
workItem.targetBuffer = 0;
// Check if there are new work items in the queue
{
sf::Lock lock(workQueueMutex);
if (!workPending)
return;
if (!workQueue.empty())
{
workItem = workQueue.front();
workQueue.pop_front();
}
}
// If we didn't receive a new work item, keep looping
if (!workItem.targetBuffer)
{
sf::sleep(sf::milliseconds(10));
continue;
}
processWorkItem(vertices, workItem);
{
sf::Lock lock(workQueueMutex);
--pendingWorkCount;
}
}
}
////////////////////////////////////////////////////////////
/// Terrain generation entry point. This queues up the
/// generation work items which the worker threads dequeue
/// and process.
///
////////////////////////////////////////////////////////////
void generateTerrain(sf::Vertex* buffer)
{
bufferUploadPending = true;
// Make sure the work queue is empty before queuing new work
for (;;)
{
{
sf::Lock lock(workQueueMutex);
if (workQueue.empty())
break;
}
sf::sleep(sf::milliseconds(10));
}
// Queue all the new work items
{
sf::Lock lock(workQueueMutex);
for (unsigned int i = 0; i < blockCount; i++)
{
WorkItem workItem = {buffer, i};
workQueue.push_back(workItem);
}
pendingWorkCount = blockCount;
}
}

Binary file not shown.

View File

@ -0,0 +1,11 @@
varying vec3 normal;
uniform float lightFactor;
void main()
{
vec3 lightPosition = vec3(-1.0, 1.0, 1.0);
vec3 eyePosition = vec3(0.0, 0.0, 1.0);
vec3 halfVector = normalize(lightPosition + eyePosition);
float intensity = lightFactor + (1.0 - lightFactor) * dot(normalize(normal), normalize(halfVector));
gl_FragColor = gl_Color * vec4(intensity, intensity, intensity, 1.0);
}

View File

@ -0,0 +1,8 @@
varying vec3 normal;
void main()
{
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
gl_FrontColor = gl_Color;
normal = vec3(gl_MultiTexCoord0.xy, 1.0);
}

View File

@ -0,0 +1,316 @@
// stb_perlin.h - v0.3 - perlin noise
// public domain single-file C implementation by Sean Barrett
//
// LICENSE
//
// See end of file.
//
//
// to create the implementation,
// #define STB_PERLIN_IMPLEMENTATION
// in *one* C/CPP file that includes this file.
//
//
// Documentation:
//
// float stb_perlin_noise3( float x,
// float y,
// float z,
// int x_wrap=0,
// int y_wrap=0,
// int z_wrap=0)
//
// This function computes a random value at the coordinate (x,y,z).
// Adjacent random values are continuous but the noise fluctuates
// its randomness with period 1, i.e. takes on wholly unrelated values
// at integer points. Specifically, this implements Ken Perlin's
// revised noise function from 2002.
//
// The "wrap" parameters can be used to create wraparound noise that
// wraps at powers of two. The numbers MUST be powers of two. Specify
// 0 to mean "don't care". (The noise always wraps every 256 due
// details of the implementation, even if you ask for larger or no
// wrapping.)
//
// Fractal Noise:
//
// Three common fractal noise functions are included, which produce
// a wide variety of nice effects depending on the parameters
// provided. Note that each function will call stb_perlin_noise3
// 'octaves' times, so this parameter will affect runtime.
//
// float stb_perlin_ridge_noise3(float x, float y, float z,
// float lacunarity, float gain, float offset, int octaves,
// int x_wrap, int y_wrap, int z_wrap);
//
// float stb_perlin_fbm_noise3(float x, float y, float z,
// float lacunarity, float gain, int octaves,
// int x_wrap, int y_wrap, int z_wrap);
//
// float stb_perlin_turbulence_noise3(float x, float y, float z,
// float lacunarity, float gain,int octaves,
// int x_wrap, int y_wrap, int z_wrap);
//
// Typical values to start playing with:
// octaves = 6 -- number of "octaves" of noise3() to sum
// lacunarity = ~ 2.0 -- spacing between successive octaves (use exactly 2.0 for wrapping output)
// gain = 0.5 -- relative weighting applied to each successive octave
// offset = 1.0? -- used to invert the ridges, may need to be larger, not sure
//
//
// Contributors:
// Jack Mott - additional noise functions
//
#ifdef __cplusplus
extern "C" {
#endif
extern float stb_perlin_noise3(float x, float y, float z, int x_wrap, int y_wrap, int z_wrap);
extern float stb_perlin_ridge_noise3(float x, float y, float z,float lacunarity, float gain, float offset, int octaves,int x_wrap, int y_wrap, int z_wrap);
extern float stb_perlin_fbm_noise3(float x, float y, float z,float lacunarity, float gain, int octaves,int x_wrap, int y_wrap, int z_wrap);
extern float stb_perlin_turbulence_noise3(float x, float y, float z, float lacunarity, float gain, int octaves,int x_wrap, int y_wrap, int z_wrap);
#ifdef __cplusplus
}
#endif
#ifdef STB_PERLIN_IMPLEMENTATION
// not same permutation table as Perlin's reference to avoid copyright issues;
// Perlin's table can be found at http://mrl.nyu.edu/~perlin/noise/
// @OPTIMIZE: should this be unsigned char instead of int for cache?
static unsigned char stb__perlin_randtab[512] =
{
23, 125, 161, 52, 103, 117, 70, 37, 247, 101, 203, 169, 124, 126, 44, 123,
152, 238, 145, 45, 171, 114, 253, 10, 192, 136, 4, 157, 249, 30, 35, 72,
175, 63, 77, 90, 181, 16, 96, 111, 133, 104, 75, 162, 93, 56, 66, 240,
8, 50, 84, 229, 49, 210, 173, 239, 141, 1, 87, 18, 2, 198, 143, 57,
225, 160, 58, 217, 168, 206, 245, 204, 199, 6, 73, 60, 20, 230, 211, 233,
94, 200, 88, 9, 74, 155, 33, 15, 219, 130, 226, 202, 83, 236, 42, 172,
165, 218, 55, 222, 46, 107, 98, 154, 109, 67, 196, 178, 127, 158, 13, 243,
65, 79, 166, 248, 25, 224, 115, 80, 68, 51, 184, 128, 232, 208, 151, 122,
26, 212, 105, 43, 179, 213, 235, 148, 146, 89, 14, 195, 28, 78, 112, 76,
250, 47, 24, 251, 140, 108, 186, 190, 228, 170, 183, 139, 39, 188, 244, 246,
132, 48, 119, 144, 180, 138, 134, 193, 82, 182, 120, 121, 86, 220, 209, 3,
91, 241, 149, 85, 205, 150, 113, 216, 31, 100, 41, 164, 177, 214, 153, 231,
38, 71, 185, 174, 97, 201, 29, 95, 7, 92, 54, 254, 191, 118, 34, 221,
131, 11, 163, 99, 234, 81, 227, 147, 156, 176, 17, 142, 69, 12, 110, 62,
27, 255, 0, 194, 59, 116, 242, 252, 19, 21, 187, 53, 207, 129, 64, 135,
61, 40, 167, 237, 102, 223, 106, 159, 197, 189, 215, 137, 36, 32, 22, 5,
// and a second copy so we don't need an extra mask or static initializer
23, 125, 161, 52, 103, 117, 70, 37, 247, 101, 203, 169, 124, 126, 44, 123,
152, 238, 145, 45, 171, 114, 253, 10, 192, 136, 4, 157, 249, 30, 35, 72,
175, 63, 77, 90, 181, 16, 96, 111, 133, 104, 75, 162, 93, 56, 66, 240,
8, 50, 84, 229, 49, 210, 173, 239, 141, 1, 87, 18, 2, 198, 143, 57,
225, 160, 58, 217, 168, 206, 245, 204, 199, 6, 73, 60, 20, 230, 211, 233,
94, 200, 88, 9, 74, 155, 33, 15, 219, 130, 226, 202, 83, 236, 42, 172,
165, 218, 55, 222, 46, 107, 98, 154, 109, 67, 196, 178, 127, 158, 13, 243,
65, 79, 166, 248, 25, 224, 115, 80, 68, 51, 184, 128, 232, 208, 151, 122,
26, 212, 105, 43, 179, 213, 235, 148, 146, 89, 14, 195, 28, 78, 112, 76,
250, 47, 24, 251, 140, 108, 186, 190, 228, 170, 183, 139, 39, 188, 244, 246,
132, 48, 119, 144, 180, 138, 134, 193, 82, 182, 120, 121, 86, 220, 209, 3,
91, 241, 149, 85, 205, 150, 113, 216, 31, 100, 41, 164, 177, 214, 153, 231,
38, 71, 185, 174, 97, 201, 29, 95, 7, 92, 54, 254, 191, 118, 34, 221,
131, 11, 163, 99, 234, 81, 227, 147, 156, 176, 17, 142, 69, 12, 110, 62,
27, 255, 0, 194, 59, 116, 242, 252, 19, 21, 187, 53, 207, 129, 64, 135,
61, 40, 167, 237, 102, 223, 106, 159, 197, 189, 215, 137, 36, 32, 22, 5,
};
static float stb__perlin_lerp(float a, float b, float t)
{
return a + (b-a) * t;
}
static int stb__perlin_fastfloor(float a)
{
int ai = (int) a;
return (a < ai) ? ai-1 : ai;
}
// different grad function from Perlin's, but easy to modify to match reference
static float stb__perlin_grad(int hash, float x, float y, float z)
{
static float basis[12][4] =
{
{ 1, 1, 0 },
{ -1, 1, 0 },
{ 1,-1, 0 },
{ -1,-1, 0 },
{ 1, 0, 1 },
{ -1, 0, 1 },
{ 1, 0,-1 },
{ -1, 0,-1 },
{ 0, 1, 1 },
{ 0,-1, 1 },
{ 0, 1,-1 },
{ 0,-1,-1 },
};
// perlin's gradient has 12 cases so some get used 1/16th of the time
// and some 2/16ths. We reduce bias by changing those fractions
// to 5/64ths and 6/64ths, and the same 4 cases get the extra weight.
static unsigned char indices[64] =
{
0,1,2,3,4,5,6,7,8,9,10,11,
0,9,1,11,
0,1,2,3,4,5,6,7,8,9,10,11,
0,1,2,3,4,5,6,7,8,9,10,11,
0,1,2,3,4,5,6,7,8,9,10,11,
0,1,2,3,4,5,6,7,8,9,10,11,
};
// if you use reference permutation table, change 63 below to 15 to match reference
// (this is why the ordering of the table above is funky)
float *grad = basis[indices[hash & 63]];
return grad[0]*x + grad[1]*y + grad[2]*z;
}
float stb_perlin_noise3(float x, float y, float z, int x_wrap, int y_wrap, int z_wrap)
{
float u,v,w;
float n000,n001,n010,n011,n100,n101,n110,n111;
float n00,n01,n10,n11;
float n0,n1;
unsigned int x_mask = (x_wrap-1) & 255;
unsigned int y_mask = (y_wrap-1) & 255;
unsigned int z_mask = (z_wrap-1) & 255;
int px = stb__perlin_fastfloor(x);
int py = stb__perlin_fastfloor(y);
int pz = stb__perlin_fastfloor(z);
int x0 = px & x_mask, x1 = (px+1) & x_mask;
int y0 = py & y_mask, y1 = (py+1) & y_mask;
int z0 = pz & z_mask, z1 = (pz+1) & z_mask;
int r0,r1, r00,r01,r10,r11;
#define stb__perlin_ease(a) (((a*6-15)*a + 10) * a * a * a)
x -= px; u = stb__perlin_ease(x);
y -= py; v = stb__perlin_ease(y);
z -= pz; w = stb__perlin_ease(z);
r0 = stb__perlin_randtab[x0];
r1 = stb__perlin_randtab[x1];
r00 = stb__perlin_randtab[r0+y0];
r01 = stb__perlin_randtab[r0+y1];
r10 = stb__perlin_randtab[r1+y0];
r11 = stb__perlin_randtab[r1+y1];
n000 = stb__perlin_grad(stb__perlin_randtab[r00+z0], x , y , z );
n001 = stb__perlin_grad(stb__perlin_randtab[r00+z1], x , y , z-1 );
n010 = stb__perlin_grad(stb__perlin_randtab[r01+z0], x , y-1, z );
n011 = stb__perlin_grad(stb__perlin_randtab[r01+z1], x , y-1, z-1 );
n100 = stb__perlin_grad(stb__perlin_randtab[r10+z0], x-1, y , z );
n101 = stb__perlin_grad(stb__perlin_randtab[r10+z1], x-1, y , z-1 );
n110 = stb__perlin_grad(stb__perlin_randtab[r11+z0], x-1, y-1, z );
n111 = stb__perlin_grad(stb__perlin_randtab[r11+z1], x-1, y-1, z-1 );
n00 = stb__perlin_lerp(n000,n001,w);
n01 = stb__perlin_lerp(n010,n011,w);
n10 = stb__perlin_lerp(n100,n101,w);
n11 = stb__perlin_lerp(n110,n111,w);
n0 = stb__perlin_lerp(n00,n01,v);
n1 = stb__perlin_lerp(n10,n11,v);
return stb__perlin_lerp(n0,n1,u);
}
float stb_perlin_ridge_noise3(float x, float y, float z,float lacunarity, float gain, float offset, int octaves,int x_wrap, int y_wrap, int z_wrap)
{
int i;
float frequency = 1.0f;
float prev = 1.0f;
float amplitude = 0.5f;
float sum = 0.0f;
for (i = 0; i < octaves; i++) {
float r = (float)(stb_perlin_noise3(x*frequency,y*frequency,z*frequency,x_wrap,y_wrap,z_wrap));
r = r<0 ? -r : r; // fabs()
r = offset - r;
r = r*r;
sum += r*amplitude*prev;
prev = r;
frequency *= lacunarity;
amplitude *= gain;
}
return sum;
}
float stb_perlin_fbm_noise3(float x, float y, float z,float lacunarity, float gain, int octaves,int x_wrap, int y_wrap, int z_wrap)
{
int i;
float frequency = 1.0f;
float amplitude = 1.0f;
float sum = 0.0f;
for (i = 0; i < octaves; i++) {
sum += stb_perlin_noise3(x*frequency,y*frequency,z*frequency,x_wrap,y_wrap,z_wrap)*amplitude;
frequency *= lacunarity;
amplitude *= gain;
}
return sum;
}
float stb_perlin_turbulence_noise3(float x, float y, float z, float lacunarity, float gain, int octaves,int x_wrap, int y_wrap, int z_wrap)
{
int i;
float frequency = 1.0f;
float amplitude = 1.0f;
float sum = 0.0f;
for (i = 0; i < octaves; i++) {
float r = stb_perlin_noise3(x*frequency,y*frequency,z*frequency,x_wrap,y_wrap,z_wrap)*amplitude;
r = r<0 ? -r : r; // fabs()
sum += r;
frequency *= lacunarity;
amplitude *= gain;
}
return sum;
}
#endif // STB_PERLIN_IMPLEMENTATION
/*
------------------------------------------------------------------------------
This software is available under 2 licenses -- choose whichever you prefer.
------------------------------------------------------------------------------
ALTERNATIVE A - MIT License
Copyright (c) 2017 Sean Barrett
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
------------------------------------------------------------------------------
ALTERNATIVE B - Public Domain (www.unlicense.org)
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
software, either in source code form or as a compiled binary, for any purpose,
commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this
software dedicate any and all copyright interest in the software to the public
domain. We make this dedication for the benefit of the public at large and to
the detriment of our heirs and successors. We intend this dedication to be an
overt act of relinquishment in perpetuity of all present and future rights to
this software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
------------------------------------------------------------------------------
*/