//////////////////////////////////////////////////////////// // // SFML - Simple and Fast Multimedia Library // Copyright (C) 2007-2024 Laurent Gomila (laurent@sfml-dev.org) // // This software is provided 'as-is', without any express or implied warranty. // In no event will the authors be held liable for any damages arising from the use of this software. // // Permission is granted to anyone to use this software for any purpose, // including commercial applications, and to alter it and redistribute it freely, // subject to the following restrictions: // // 1. The origin of this software must not be misrepresented; // you must not claim that you wrote the original software. // If you use this software in a product, an acknowledgment // in the product documentation would be appreciated but is not required. // // 2. Altered source versions must be plainly marked as such, // and must not be misrepresented as being the original software. // // 3. This notice may not be removed or altered from any source distribution. // //////////////////////////////////////////////////////////// #pragma once //////////////////////////////////////////////////////////// // Headers //////////////////////////////////////////////////////////// #include <SFML/Graphics/Export.hpp> #include <SFML/Graphics/Glsl.hpp> #include <SFML/Window/GlResource.hpp> #include <filesystem> #include <string> #include <string_view> #include <unordered_map> #include <cstddef> namespace sf { class InputStream; class Texture; //////////////////////////////////////////////////////////// /// \brief Shader class (vertex, geometry and fragment) /// //////////////////////////////////////////////////////////// class SFML_GRAPHICS_API Shader : GlResource { public: //////////////////////////////////////////////////////////// /// \brief Types of shaders /// //////////////////////////////////////////////////////////// enum class Type { Vertex, //!< %Vertex shader Geometry, //!< Geometry shader Fragment //!< Fragment (pixel) shader }; //////////////////////////////////////////////////////////// /// \brief Special type that can be passed to setUniform(), /// and that represents the texture of the object being drawn /// /// \see `setUniform(const std::string&, CurrentTextureType)` /// //////////////////////////////////////////////////////////// struct CurrentTextureType { }; //////////////////////////////////////////////////////////// /// \brief Represents the texture of the object being drawn /// /// \see `setUniform(const std::string&, CurrentTextureType)` /// //////////////////////////////////////////////////////////// // NOLINTNEXTLINE(readability-identifier-naming) static inline CurrentTextureType CurrentTexture; //////////////////////////////////////////////////////////// /// \brief Default constructor /// /// This constructor creates an empty shader. /// /// Binding an empty shader has the same effect as not /// binding any shader. /// //////////////////////////////////////////////////////////// Shader() = default; //////////////////////////////////////////////////////////// /// \brief Destructor /// //////////////////////////////////////////////////////////// ~Shader(); //////////////////////////////////////////////////////////// /// \brief Deleted copy constructor /// //////////////////////////////////////////////////////////// Shader(const Shader&) = delete; //////////////////////////////////////////////////////////// /// \brief Deleted copy assignment /// //////////////////////////////////////////////////////////// Shader& operator=(const Shader&) = delete; //////////////////////////////////////////////////////////// /// \brief Move constructor /// //////////////////////////////////////////////////////////// Shader(Shader&& source) noexcept; //////////////////////////////////////////////////////////// /// \brief Move assignment /// //////////////////////////////////////////////////////////// Shader& operator=(Shader&& right) noexcept; //////////////////////////////////////////////////////////// /// \brief Construct from a shader file /// /// This constructor loads a single shader, vertex, geometry or /// fragment, identified by the second argument. /// The source must be a text file containing a valid /// shader in GLSL language. GLSL is a C-like language /// dedicated to OpenGL shaders; you'll probably need to /// read a good documentation for it before writing your /// own shaders. /// /// \param filename Path of the vertex, geometry or fragment shader file to load /// \param type Type of shader (vertex, geometry or fragment) /// /// \throws sf::Exception if loading was unsuccessful /// /// \see `loadFromFile`, `loadFromMemory`, `loadFromStream` /// //////////////////////////////////////////////////////////// Shader(const std::filesystem::path& filename, Type type); //////////////////////////////////////////////////////////// /// \brief Construct from vertex and fragment shader files /// /// This constructor loads both the vertex and the fragment /// shaders. If one of them fails to load, the shader is left /// empty (the valid shader is unloaded). /// The sources must be text files containing valid shaders /// in GLSL language. GLSL is a C-like language dedicated to /// OpenGL shaders; you'll probably need to read a good documentation /// for it before writing your own shaders. /// /// \param vertexShaderFilename Path of the vertex shader file to load /// \param fragmentShaderFilename Path of the fragment shader file to load /// /// \throws sf::Exception if loading was unsuccessful /// /// \see `loadFromFile`, `loadFromMemory`, `loadFromStream` /// //////////////////////////////////////////////////////////// Shader(const std::filesystem::path& vertexShaderFilename, const std::filesystem::path& fragmentShaderFilename); //////////////////////////////////////////////////////////// /// \brief Construct from vertex, geometry and fragment shader files /// /// This constructor loads the vertex, geometry and fragment /// shaders. If one of them fails to load, the shader is left /// empty (the valid shader is unloaded). /// The sources must be text files containing valid shaders /// in GLSL language. GLSL is a C-like language dedicated to /// OpenGL shaders; you'll probably need to read a good documentation /// for it before writing your own shaders. /// /// \param vertexShaderFilename Path of the vertex shader file to load /// \param geometryShaderFilename Path of the geometry shader file to load /// \param fragmentShaderFilename Path of the fragment shader file to load /// /// \throws sf::Exception if loading was unsuccessful /// /// \see `loadFromFile`, `loadFromMemory`, `loadFromStream` /// //////////////////////////////////////////////////////////// Shader(const std::filesystem::path& vertexShaderFilename, const std::filesystem::path& geometryShaderFilename, const std::filesystem::path& fragmentShaderFilename); //////////////////////////////////////////////////////////// /// \brief Construct from shader in memory /// /// This constructor loads a single shader, vertex, geometry /// or fragment, identified by the second argument. /// The source code must be a valid shader in GLSL language. /// GLSL is a C-like language dedicated to OpenGL shaders; /// you'll probably need to read a good documentation for /// it before writing your own shaders. /// /// \param shader String containing the source code of the shader /// \param type Type of shader (vertex, geometry or fragment) /// /// \throws sf::Exception if loading was unsuccessful /// /// \see `loadFromFile`, `loadFromMemory`, `loadFromStream` /// //////////////////////////////////////////////////////////// Shader(std::string_view shader, Type type); //////////////////////////////////////////////////////////// /// \brief Construct from vertex and fragment shaders in memory /// /// This constructor loads both the vertex and the fragment /// shaders. If one of them fails to load, the shader is left /// empty (the valid shader is unloaded). /// The sources must be valid shaders in GLSL language. GLSL is /// a C-like language dedicated to OpenGL shaders; you'll /// probably need to read a good documentation for it before /// writing your own shaders. /// /// \param vertexShader String containing the source code of the vertex shader /// \param fragmentShader String containing the source code of the fragment shader /// /// \throws sf::Exception if loading was unsuccessful /// /// \see `loadFromFile`, `loadFromMemory`, `loadFromStream` /// //////////////////////////////////////////////////////////// Shader(std::string_view vertexShader, std::string_view fragmentShader); //////////////////////////////////////////////////////////// /// \brief Construct from vertex, geometry and fragment shaders in memory /// /// This constructor loads the vertex, geometry and fragment /// shaders. If one of them fails to load, the shader is left /// empty (the valid shader is unloaded). /// The sources must be valid shaders in GLSL language. GLSL is /// a C-like language dedicated to OpenGL shaders; you'll /// probably need to read a good documentation for it before /// writing your own shaders. /// /// \param vertexShader String containing the source code of the vertex shader /// \param geometryShader String containing the source code of the geometry shader /// \param fragmentShader String containing the source code of the fragment shader /// /// \throws sf::Exception if loading was unsuccessful /// /// \see `loadFromFile`, `loadFromMemory`, `loadFromStream` /// //////////////////////////////////////////////////////////// Shader(std::string_view vertexShader, std::string_view geometryShader, std::string_view fragmentShader); //////////////////////////////////////////////////////////// /// \brief Construct from a shader stream /// /// This constructor loads a single shader, vertex, geometry /// or fragment, identified by the second argument. /// The source code must be a valid shader in GLSL language. /// GLSL is a C-like language dedicated to OpenGL shaders; /// you'll probably need to read a good documentation for it /// before writing your own shaders. /// /// \param stream Source stream to read from /// \param type Type of shader (vertex, geometry or fragment) /// /// \throws sf::Exception if loading was unsuccessful /// /// \see `loadFromFile`, `loadFromMemory`, `loadFromStream` /// //////////////////////////////////////////////////////////// Shader(InputStream& stream, Type type); //////////////////////////////////////////////////////////// /// \brief Construct from vertex and fragment shader streams /// /// This constructor loads both the vertex and the fragment /// shaders. If one of them fails to load, the shader is left /// empty (the valid shader is unloaded). /// The source codes must be valid shaders in GLSL language. /// GLSL is a C-like language dedicated to OpenGL shaders; /// you'll probably need to read a good documentation for /// it before writing your own shaders. /// /// \param vertexShaderStream Source stream to read the vertex shader from /// \param fragmentShaderStream Source stream to read the fragment shader from /// /// \throws sf::Exception if loading was unsuccessful /// /// \see `loadFromFile`, `loadFromMemory`, `loadFromStream` /// //////////////////////////////////////////////////////////// Shader(InputStream& vertexShaderStream, InputStream& fragmentShaderStream); //////////////////////////////////////////////////////////// /// \brief Construct from vertex, geometry and fragment shader streams /// /// This constructor loads the vertex, geometry and fragment /// shaders. If one of them fails to load, the shader is left /// empty (the valid shader is unloaded). /// The source codes must be valid shaders in GLSL language. /// GLSL is a C-like language dedicated to OpenGL shaders; /// you'll probably need to read a good documentation for /// it before writing your own shaders. /// /// \param vertexShaderStream Source stream to read the vertex shader from /// \param geometryShaderStream Source stream to read the geometry shader from /// \param fragmentShaderStream Source stream to read the fragment shader from /// /// \throws sf::Exception if loading was unsuccessful /// /// \see `loadFromFile`, `loadFromMemory`, `loadFromStream` /// //////////////////////////////////////////////////////////// Shader(InputStream& vertexShaderStream, InputStream& geometryShaderStream, InputStream& fragmentShaderStream); //////////////////////////////////////////////////////////// /// \brief Load the vertex, geometry or fragment shader from a file /// /// This function loads a single shader, vertex, geometry or /// fragment, identified by the second argument. /// The source must be a text file containing a valid /// shader in GLSL language. GLSL is a C-like language /// dedicated to OpenGL shaders; you'll probably need to /// read a good documentation for it before writing your /// own shaders. /// /// \param filename Path of the vertex, geometry or fragment shader file to load /// \param type Type of shader (vertex, geometry or fragment) /// /// \return `true` if loading succeeded, `false` if it failed /// /// \see `loadFromMemory`, `loadFromStream` /// //////////////////////////////////////////////////////////// [[nodiscard]] bool loadFromFile(const std::filesystem::path& filename, Type type); //////////////////////////////////////////////////////////// /// \brief Load both the vertex and fragment shaders from files /// /// This function loads both the vertex and the fragment /// shaders. If one of them fails to load, the shader is left /// empty (the valid shader is unloaded). /// The sources must be text files containing valid shaders /// in GLSL language. GLSL is a C-like language dedicated to /// OpenGL shaders; you'll probably need to read a good documentation /// for it before writing your own shaders. /// /// \param vertexShaderFilename Path of the vertex shader file to load /// \param fragmentShaderFilename Path of the fragment shader file to load /// /// \return `true` if loading succeeded, `false` if it failed /// /// \see `loadFromMemory`, `loadFromStream` /// //////////////////////////////////////////////////////////// [[nodiscard]] bool loadFromFile(const std::filesystem::path& vertexShaderFilename, const std::filesystem::path& fragmentShaderFilename); //////////////////////////////////////////////////////////// /// \brief Load the vertex, geometry and fragment shaders from files /// /// This function loads the vertex, geometry and fragment /// shaders. If one of them fails to load, the shader is left /// empty (the valid shader is unloaded). /// The sources must be text files containing valid shaders /// in GLSL language. GLSL is a C-like language dedicated to /// OpenGL shaders; you'll probably need to read a good documentation /// for it before writing your own shaders. /// /// \param vertexShaderFilename Path of the vertex shader file to load /// \param geometryShaderFilename Path of the geometry shader file to load /// \param fragmentShaderFilename Path of the fragment shader file to load /// /// \return `true` if loading succeeded, `false` if it failed /// /// \see `loadFromMemory`, `loadFromStream` /// //////////////////////////////////////////////////////////// [[nodiscard]] bool loadFromFile(const std::filesystem::path& vertexShaderFilename, const std::filesystem::path& geometryShaderFilename, const std::filesystem::path& fragmentShaderFilename); //////////////////////////////////////////////////////////// /// \brief Load the vertex, geometry or fragment shader from a source code in memory /// /// This function loads a single shader, vertex, geometry /// or fragment, identified by the second argument. /// The source code must be a valid shader in GLSL language. /// GLSL is a C-like language dedicated to OpenGL shaders; /// you'll probably need to read a good documentation for /// it before writing your own shaders. /// /// \param shader String containing the source code of the shader /// \param type Type of shader (vertex, geometry or fragment) /// /// \return `true` if loading succeeded, `false` if it failed /// /// \see `loadFromFile`, `loadFromStream` /// //////////////////////////////////////////////////////////// [[nodiscard]] bool loadFromMemory(std::string_view shader, Type type); //////////////////////////////////////////////////////////// /// \brief Load both the vertex and fragment shaders from source codes in memory /// /// This function loads both the vertex and the fragment /// shaders. If one of them fails to load, the shader is left /// empty (the valid shader is unloaded). /// The sources must be valid shaders in GLSL language. GLSL is /// a C-like language dedicated to OpenGL shaders; you'll /// probably need to read a good documentation for it before /// writing your own shaders. /// /// \param vertexShader String containing the source code of the vertex shader /// \param fragmentShader String containing the source code of the fragment shader /// /// \return `true` if loading succeeded, `false` if it failed /// /// \see `loadFromFile`, `loadFromStream` /// //////////////////////////////////////////////////////////// [[nodiscard]] bool loadFromMemory(std::string_view vertexShader, std::string_view fragmentShader); //////////////////////////////////////////////////////////// /// \brief Load the vertex, geometry and fragment shaders from source codes in memory /// /// This function loads the vertex, geometry and fragment /// shaders. If one of them fails to load, the shader is left /// empty (the valid shader is unloaded). /// The sources must be valid shaders in GLSL language. GLSL is /// a C-like language dedicated to OpenGL shaders; you'll /// probably need to read a good documentation for it before /// writing your own shaders. /// /// \param vertexShader String containing the source code of the vertex shader /// \param geometryShader String containing the source code of the geometry shader /// \param fragmentShader String containing the source code of the fragment shader /// /// \return `true` if loading succeeded, `false` if it failed /// /// \see `loadFromFile`, `loadFromStream` /// //////////////////////////////////////////////////////////// [[nodiscard]] bool loadFromMemory(std::string_view vertexShader, std::string_view geometryShader, std::string_view fragmentShader); //////////////////////////////////////////////////////////// /// \brief Load the vertex, geometry or fragment shader from a custom stream /// /// This function loads a single shader, vertex, geometry /// or fragment, identified by the second argument. /// The source code must be a valid shader in GLSL language. /// GLSL is a C-like language dedicated to OpenGL shaders; /// you'll probably need to read a good documentation for it /// before writing your own shaders. /// /// \param stream Source stream to read from /// \param type Type of shader (vertex, geometry or fragment) /// /// \return `true` if loading succeeded, `false` if it failed /// /// \see `loadFromFile`, `loadFromMemory` /// //////////////////////////////////////////////////////////// [[nodiscard]] bool loadFromStream(InputStream& stream, Type type); //////////////////////////////////////////////////////////// /// \brief Load both the vertex and fragment shaders from custom streams /// /// This function loads both the vertex and the fragment /// shaders. If one of them fails to load, the shader is left /// empty (the valid shader is unloaded). /// The source codes must be valid shaders in GLSL language. /// GLSL is a C-like language dedicated to OpenGL shaders; /// you'll probably need to read a good documentation for /// it before writing your own shaders. /// /// \param vertexShaderStream Source stream to read the vertex shader from /// \param fragmentShaderStream Source stream to read the fragment shader from /// /// \return `true` if loading succeeded, `false` if it failed /// /// \see `loadFromFile`, `loadFromMemory` /// //////////////////////////////////////////////////////////// [[nodiscard]] bool loadFromStream(InputStream& vertexShaderStream, InputStream& fragmentShaderStream); //////////////////////////////////////////////////////////// /// \brief Load the vertex, geometry and fragment shaders from custom streams /// /// This function loads the vertex, geometry and fragment /// shaders. If one of them fails to load, the shader is left /// empty (the valid shader is unloaded). /// The source codes must be valid shaders in GLSL language. /// GLSL is a C-like language dedicated to OpenGL shaders; /// you'll probably need to read a good documentation for /// it before writing your own shaders. /// /// \param vertexShaderStream Source stream to read the vertex shader from /// \param geometryShaderStream Source stream to read the geometry shader from /// \param fragmentShaderStream Source stream to read the fragment shader from /// /// \return `true` if loading succeeded, `false` if it failed /// /// \see `loadFromFile`, `loadFromMemory` /// //////////////////////////////////////////////////////////// [[nodiscard]] bool loadFromStream(InputStream& vertexShaderStream, InputStream& geometryShaderStream, InputStream& fragmentShaderStream); //////////////////////////////////////////////////////////// /// \brief Specify value for \p float uniform /// /// \param name Name of the uniform variable in GLSL /// \param x Value of the float scalar /// //////////////////////////////////////////////////////////// void setUniform(const std::string& name, float x); //////////////////////////////////////////////////////////// /// \brief Specify value for \p vec2 uniform /// /// \param name Name of the uniform variable in GLSL /// \param vector Value of the vec2 vector /// //////////////////////////////////////////////////////////// void setUniform(const std::string& name, Glsl::Vec2 vector); //////////////////////////////////////////////////////////// /// \brief Specify value for \p vec3 uniform /// /// \param name Name of the uniform variable in GLSL /// \param vector Value of the vec3 vector /// //////////////////////////////////////////////////////////// void setUniform(const std::string& name, const Glsl::Vec3& vector); //////////////////////////////////////////////////////////// /// \brief Specify value for \p vec4 uniform /// /// This overload can also be called with `sf::Color` objects /// that are converted to `sf::Glsl::Vec4`. /// /// It is important to note that the components of the color are /// normalized before being passed to the shader. Therefore, /// they are converted from range [0 .. 255] to range [0 .. 1]. /// For example, a `sf::Color(255, 127, 0, 255)` will be transformed /// to a `vec4(1.0, 0.5, 0.0, 1.0)` in the shader. /// /// \param name Name of the uniform variable in GLSL /// \param vector Value of the vec4 vector /// //////////////////////////////////////////////////////////// void setUniform(const std::string& name, const Glsl::Vec4& vector); //////////////////////////////////////////////////////////// /// \brief Specify value for \p int uniform /// /// \param name Name of the uniform variable in GLSL /// \param x Value of the int scalar /// //////////////////////////////////////////////////////////// void setUniform(const std::string& name, int x); //////////////////////////////////////////////////////////// /// \brief Specify value for \p ivec2 uniform /// /// \param name Name of the uniform variable in GLSL /// \param vector Value of the ivec2 vector /// //////////////////////////////////////////////////////////// void setUniform(const std::string& name, Glsl::Ivec2 vector); //////////////////////////////////////////////////////////// /// \brief Specify value for \p ivec3 uniform /// /// \param name Name of the uniform variable in GLSL /// \param vector Value of the ivec3 vector /// //////////////////////////////////////////////////////////// void setUniform(const std::string& name, const Glsl::Ivec3& vector); //////////////////////////////////////////////////////////// /// \brief Specify value for \p ivec4 uniform /// /// This overload can also be called with `sf::Color` objects /// that are converted to `sf::Glsl::Ivec4`. /// /// If color conversions are used, the ivec4 uniform in GLSL /// will hold the same values as the original `sf::Color` /// instance. For example, `sf::Color(255, 127, 0, 255)` is /// mapped to `ivec4(255, 127, 0, 255)`. /// /// \param name Name of the uniform variable in GLSL /// \param vector Value of the ivec4 vector /// //////////////////////////////////////////////////////////// void setUniform(const std::string& name, const Glsl::Ivec4& vector); //////////////////////////////////////////////////////////// /// \brief Specify value for \p bool uniform /// /// \param name Name of the uniform variable in GLSL /// \param x Value of the bool scalar /// //////////////////////////////////////////////////////////// void setUniform(const std::string& name, bool x); //////////////////////////////////////////////////////////// /// \brief Specify value for \p bvec2 uniform /// /// \param name Name of the uniform variable in GLSL /// \param vector Value of the bvec2 vector /// //////////////////////////////////////////////////////////// void setUniform(const std::string& name, Glsl::Bvec2 vector); //////////////////////////////////////////////////////////// /// \brief Specify value for \p bvec3 uniform /// /// \param name Name of the uniform variable in GLSL /// \param vector Value of the bvec3 vector /// //////////////////////////////////////////////////////////// void setUniform(const std::string& name, const Glsl::Bvec3& vector); //////////////////////////////////////////////////////////// /// \brief Specify value for \p bvec4 uniform /// /// \param name Name of the uniform variable in GLSL /// \param vector Value of the bvec4 vector /// //////////////////////////////////////////////////////////// void setUniform(const std::string& name, const Glsl::Bvec4& vector); //////////////////////////////////////////////////////////// /// \brief Specify value for \p mat3 matrix /// /// \param name Name of the uniform variable in GLSL /// \param matrix Value of the mat3 matrix /// //////////////////////////////////////////////////////////// void setUniform(const std::string& name, const Glsl::Mat3& matrix); //////////////////////////////////////////////////////////// /// \brief Specify value for \p mat4 matrix /// /// \param name Name of the uniform variable in GLSL /// \param matrix Value of the mat4 matrix /// //////////////////////////////////////////////////////////// void setUniform(const std::string& name, const Glsl::Mat4& matrix); //////////////////////////////////////////////////////////// /// \brief Specify a texture as \p sampler2D uniform /// /// \a name is the name of the variable to change in the shader. /// The corresponding parameter in the shader must be a 2D texture /// (\p sampler2D GLSL type). /// /// Example: /// \code /// uniform sampler2D the_texture; // this is the variable in the shader /// \endcode /// \code /// sf::Texture texture; /// ... /// shader.setUniform("the_texture", texture); /// \endcode /// It is important to note that `texture` must remain alive as long /// as the shader uses it, no copy is made internally. /// /// To use the texture of the object being drawn, which cannot be /// known in advance, you can pass the special value /// `sf::Shader::CurrentTexture`: /// \code /// shader.setUniform("the_texture", sf::Shader::CurrentTexture). /// \endcode /// /// \param name Name of the texture in the shader /// \param texture Texture to assign /// //////////////////////////////////////////////////////////// void setUniform(const std::string& name, const Texture& texture); //////////////////////////////////////////////////////////// /// \brief Disallow setting from a temporary texture /// //////////////////////////////////////////////////////////// void setUniform(const std::string& name, const Texture&& texture) = delete; //////////////////////////////////////////////////////////// /// \brief Specify current texture as \p sampler2D uniform /// /// This overload maps a shader texture variable to the /// texture of the object being drawn, which cannot be /// known in advance. The second argument must be /// `sf::Shader::CurrentTexture`. /// The corresponding parameter in the shader must be a 2D texture /// (\p sampler2D GLSL type). /// /// Example: /// \code /// uniform sampler2D current; // this is the variable in the shader /// \endcode /// \code /// shader.setUniform("current", sf::Shader::CurrentTexture); /// \endcode /// /// \param name Name of the texture in the shader /// //////////////////////////////////////////////////////////// void setUniform(const std::string& name, CurrentTextureType); //////////////////////////////////////////////////////////// /// \brief Specify values for \p float[] array uniform /// /// \param name Name of the uniform variable in GLSL /// \param scalarArray pointer to array of \p float values /// \param length Number of elements in the array /// //////////////////////////////////////////////////////////// void setUniformArray(const std::string& name, const float* scalarArray, std::size_t length); //////////////////////////////////////////////////////////// /// \brief Specify values for \p vec2[] array uniform /// /// \param name Name of the uniform variable in GLSL /// \param vectorArray pointer to array of \p vec2 values /// \param length Number of elements in the array /// //////////////////////////////////////////////////////////// void setUniformArray(const std::string& name, const Glsl::Vec2* vectorArray, std::size_t length); //////////////////////////////////////////////////////////// /// \brief Specify values for \p vec3[] array uniform /// /// \param name Name of the uniform variable in GLSL /// \param vectorArray pointer to array of \p vec3 values /// \param length Number of elements in the array /// //////////////////////////////////////////////////////////// void setUniformArray(const std::string& name, const Glsl::Vec3* vectorArray, std::size_t length); //////////////////////////////////////////////////////////// /// \brief Specify values for \p vec4[] array uniform /// /// \param name Name of the uniform variable in GLSL /// \param vectorArray pointer to array of \p vec4 values /// \param length Number of elements in the array /// //////////////////////////////////////////////////////////// void setUniformArray(const std::string& name, const Glsl::Vec4* vectorArray, std::size_t length); //////////////////////////////////////////////////////////// /// \brief Specify values for \p mat3[] array uniform /// /// \param name Name of the uniform variable in GLSL /// \param matrixArray pointer to array of \p mat3 values /// \param length Number of elements in the array /// //////////////////////////////////////////////////////////// void setUniformArray(const std::string& name, const Glsl::Mat3* matrixArray, std::size_t length); //////////////////////////////////////////////////////////// /// \brief Specify values for \p mat4[] array uniform /// /// \param name Name of the uniform variable in GLSL /// \param matrixArray pointer to array of \p mat4 values /// \param length Number of elements in the array /// //////////////////////////////////////////////////////////// void setUniformArray(const std::string& name, const Glsl::Mat4* matrixArray, std::size_t length); //////////////////////////////////////////////////////////// /// \brief Get the underlying OpenGL handle of the shader. /// /// You shouldn't need to use this function, unless you have /// very specific stuff to implement that SFML doesn't support, /// or implement a temporary workaround until a bug is fixed. /// /// \return OpenGL handle of the shader or 0 if not yet loaded /// //////////////////////////////////////////////////////////// [[nodiscard]] unsigned int getNativeHandle() const; //////////////////////////////////////////////////////////// /// \brief Bind a shader for rendering /// /// This function is not part of the graphics API, it mustn't be /// used when drawing SFML entities. It must be used only if you /// mix `sf::Shader` with OpenGL code. /// /// \code /// sf::Shader s1, s2; /// ... /// sf::Shader::bind(&s1); /// // draw OpenGL stuff that use s1... /// sf::Shader::bind(&s2); /// // draw OpenGL stuff that use s2... /// sf::Shader::bind(nullptr); /// // draw OpenGL stuff that use no shader... /// \endcode /// /// \param shader Shader to bind, can be null to use no shader /// //////////////////////////////////////////////////////////// static void bind(const Shader* shader); //////////////////////////////////////////////////////////// /// \brief Tell whether or not the system supports shaders /// /// This function should always be called before using /// the shader features. If it returns `false`, then /// any attempt to use `sf::Shader` will fail. /// /// \return `true` if shaders are supported, `false` otherwise /// //////////////////////////////////////////////////////////// [[nodiscard]] static bool isAvailable(); //////////////////////////////////////////////////////////// /// \brief Tell whether or not the system supports geometry shaders /// /// This function should always be called before using /// the geometry shader features. If it returns `false`, then /// any attempt to use `sf::Shader` geometry shader features will fail. /// /// This function can only return `true` if isAvailable() would also /// return `true`, since shaders in general have to be supported in /// order for geometry shaders to be supported as well. /// /// Note: The first call to this function, whether by your /// code or SFML will result in a context switch. /// /// \return `true` if geometry shaders are supported, `false` otherwise /// //////////////////////////////////////////////////////////// [[nodiscard]] static bool isGeometryAvailable(); private: //////////////////////////////////////////////////////////// /// \brief Compile the shader(s) and create the program /// /// If one of the arguments is a null pointer, the corresponding shader /// is not created. /// /// \param vertexShaderCode Source code of the vertex shader /// \param geometryShaderCode Source code of the geometry shader /// \param fragmentShaderCode Source code of the fragment shader /// /// \return `true` on success, `false` if any error happened /// //////////////////////////////////////////////////////////// [[nodiscard]] bool compile(std::string_view vertexShaderCode, std::string_view geometryShaderCode, std::string_view fragmentShaderCode); //////////////////////////////////////////////////////////// /// \brief Bind all the textures used by the shader /// /// This function each texture to a different unit, and /// updates the corresponding variables in the shader accordingly. /// //////////////////////////////////////////////////////////// void bindTextures() const; //////////////////////////////////////////////////////////// /// \brief Get the location ID of a shader uniform /// /// \param name Name of the uniform variable to search /// /// \return Location ID of the uniform, or -1 if not found /// //////////////////////////////////////////////////////////// int getUniformLocation(const std::string& name); //////////////////////////////////////////////////////////// /// \brief RAII object to save and restore the program /// binding while uniforms are being set /// /// Implementation is private in the .cpp file. /// //////////////////////////////////////////////////////////// struct UniformBinder; //////////////////////////////////////////////////////////// // Types //////////////////////////////////////////////////////////// using TextureTable = std::unordered_map<int, const Texture*>; using UniformTable = std::unordered_map<std::string, int>; //////////////////////////////////////////////////////////// // Member data //////////////////////////////////////////////////////////// unsigned int m_shaderProgram{}; //!< OpenGL identifier for the program int m_currentTexture{-1}; //!< Location of the current texture in the shader TextureTable m_textures; //!< Texture variables in the shader, mapped to their location UniformTable m_uniforms; //!< Parameters location cache }; } // namespace sf //////////////////////////////////////////////////////////// /// \class sf::Shader /// \ingroup graphics /// /// Shaders are programs written using a specific language, /// executed directly by the graphics card and allowing /// to apply real-time operations to the rendered entities. /// /// There are three kinds of shaders: /// \li %Vertex shaders, that process vertices /// \li Geometry shaders, that process primitives /// \li Fragment (pixel) shaders, that process pixels /// /// A `sf::Shader` can be composed of either a vertex shader /// alone, a geometry shader alone, a fragment shader alone, /// or any combination of them. (see the variants of the /// load functions). /// /// Shaders are written in GLSL, which is a C-like /// language dedicated to OpenGL shaders. You'll probably /// need to learn its basics before writing your own shaders /// for SFML. /// /// Like any C/C++ program, a GLSL shader has its own variables /// called _uniforms_ that you can set from your C++ application. /// `sf::Shader` handles different types of uniforms: /// \li scalars: \p float, \p int, \p bool /// \li vectors (2, 3 or 4 components) /// \li matrices (3x3 or 4x4) /// \li samplers (textures) /// /// Some SFML-specific types can be converted: /// \li `sf::Color` as a 4D vector (\p vec4) /// \li `sf::Transform` as matrices (\p mat3 or \p mat4) /// /// Every uniform variable in a shader can be set through one of the /// `setUniform()` or `setUniformArray()` overloads. For example, if you /// have a shader with the following uniforms: /// \code /// uniform float offset; /// uniform vec3 point; /// uniform vec4 color; /// uniform mat4 matrix; /// uniform sampler2D overlay; /// uniform sampler2D current; /// \endcode /// You can set their values from C++ code as follows, using the types /// defined in the `sf::Glsl` namespace: /// \code /// shader.setUniform("offset", 2.f); /// shader.setUniform("point", sf::Vector3f(0.5f, 0.8f, 0.3f)); /// shader.setUniform("color", sf::Glsl::Vec4(color)); // color is a sf::Color /// shader.setUniform("matrix", sf::Glsl::Mat4(transform)); // transform is a sf::Transform /// shader.setUniform("overlay", texture); // texture is a sf::Texture /// shader.setUniform("current", sf::Shader::CurrentTexture); /// \endcode /// /// The special `Shader::CurrentTexture` argument maps the /// given \p sampler2D uniform to the current texture of the /// object being drawn (which cannot be known in advance). /// /// To apply a shader to a drawable, you must pass it as an /// additional parameter to the `RenderWindow::draw` function: /// \code /// window.draw(sprite, &shader); /// \endcode /// /// ... which is in fact just a shortcut for this: /// \code /// sf::RenderStates states; /// states.shader = &shader; /// window.draw(sprite, states); /// \endcode /// /// In the code above we pass a pointer to the shader, because it may /// be null (which means "no shader"). /// /// Shaders can be used on any drawable, but some combinations are /// not interesting. For example, using a vertex shader on a `sf::Sprite` /// is limited because there are only 4 vertices, the sprite would /// have to be subdivided in order to apply wave effects. /// Another bad example is a fragment shader with `sf::Text`: the texture /// of the text is not the actual text that you see on screen, it is /// a big texture containing all the characters of the font in an /// arbitrary order; thus, texture lookups on pixels other than the /// current one may not give you the expected result. /// /// Shaders can also be used to apply global post-effects to the /// current contents of the target. /// This can be done in two different ways: /// \li draw everything to a `sf::RenderTexture`, then draw it to /// the main target using the shader /// \li draw everything directly to the main target, then use /// `sf::Texture::update(Window&)` to copy its contents to a texture /// and draw it to the main target using the shader /// /// The first technique is more optimized because it doesn't involve /// retrieving the target's pixels to system memory, but the /// second one doesn't impact the rendering process and can be /// easily inserted anywhere without impacting all the code. /// /// Like `sf::Texture` that can be used as a raw OpenGL texture, /// `sf::Shader` can also be used directly as a raw shader for /// custom OpenGL geometry. /// \code /// sf::Shader::bind(&shader); /// ... render OpenGL geometry ... /// sf::Shader::bind(nullptr); /// \endcode /// /// \see `sf::Glsl` /// ////////////////////////////////////////////////////////////