mirror of
https://github.com/SFML/SFML.git
synced 2025-01-20 00:05:13 +08:00
643ff2b38a
- alloc.d * small fix in KeyCode enum git-svn-id: https://sfml.svn.sourceforge.net/svnroot/sfml/branches/sfml2@1586 4e206d99-4929-0410-ac5d-dfc041789085
467 lines
12 KiB
D
467 lines
12 KiB
D
/*
|
|
* DSFML - SFML Library wrapper for the D programming language.
|
|
* Copyright (C) 2010 Andreas Hollandt
|
|
*
|
|
* This software is provided 'as-is', without any express or
|
|
* implied warranty. In no event will the authors be held
|
|
* liable for any damages arising from the use of this software.
|
|
*
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute
|
|
* it freely, subject to the following restrictions:
|
|
*
|
|
* 1. The origin of this software must not be misrepresented;
|
|
* you must not claim that you wrote the original software.
|
|
* If you use this software in a product, an acknowledgment
|
|
* in the product documentation would be appreciated but
|
|
* is not required.
|
|
*
|
|
* 2. Altered source versions must be plainly marked as such,
|
|
* and must not be misrepresented as being the original software.
|
|
*
|
|
* 3. This notice may not be removed or altered from any
|
|
* source distribution.
|
|
*/
|
|
module dsfml.system.vector;
|
|
|
|
import std.conv;
|
|
import std.math;
|
|
import std.traits : isFloatingPoint;
|
|
|
|
import std.typetuple;
|
|
|
|
/**
|
|
* generic fixed-size Vector struct
|
|
*
|
|
* Params:
|
|
* T = element type
|
|
* dim = vector dimension
|
|
*/
|
|
struct Vector(T, int dim)
|
|
{
|
|
static assert (dim >= 2 && dim <= 4);
|
|
|
|
// vectors of 3 floats are extended to 4 to make it possible to use SSE optimizations
|
|
private const realdim = (is(T == float) && dim == 3 && sseAvailable) ? 4 : dim;
|
|
// vectors of (3)4 floats or 2 doubles will use SSE
|
|
private const bool useSSE = (is(T == float) && realdim == 4 /* || is(T == double) && dim == 2 */ ) && sseAvailable;
|
|
|
|
private alias LengthReturnType!(T) LengthType; // the type returned by length
|
|
union
|
|
{
|
|
/// normal struct element access
|
|
struct
|
|
{
|
|
static if (dim >= 1) T x;
|
|
static if (dim >= 2) T y;
|
|
static if (dim >= 3) T z;
|
|
static if (dim >= 4) T w;
|
|
}
|
|
|
|
struct
|
|
{
|
|
static if (dim >= 1) T r;
|
|
static if (dim >= 2) T g;
|
|
static if (dim >= 3) T b;
|
|
static if (dim >= 4) T a;
|
|
}
|
|
|
|
// only the array has the hidden 4th value in case of vec3f
|
|
// this is to be able to foreach over tuple without computing w unnecessarily
|
|
T[realdim] cell; /// array access
|
|
Repeat!(T, dim) tuple; /// for tuple access
|
|
}
|
|
|
|
// zero vectors
|
|
static if (2 == dim) const static Vector zero = Vector(0, 0);
|
|
static if (3 == dim) const static Vector zero = Vector(0, 0, 0);
|
|
static if (4 == dim) const static Vector zero = Vector(0, 0, 0, 0);
|
|
|
|
static if (2 == dim) const static Vector one = Vector(1, 1);
|
|
static if (3 == dim) const static Vector one = Vector(1, 1, 1);
|
|
static if (4 == dim) const static Vector one = Vector(1, 1, 1, 1);
|
|
|
|
static if (2 == dim) const static Vector unitX = Vector(1, 0);
|
|
static if (3 == dim) const static Vector unitX = Vector(1, 0, 0);
|
|
static if (4 == dim) const static Vector unitX = Vector(1, 0, 0, 0);
|
|
|
|
static if (2 == dim) const static Vector unitY = Vector(0, 1);
|
|
static if (3 == dim) const static Vector unitY = Vector(0, 1, 0);
|
|
static if (4 == dim) const static Vector unitY = Vector(0, 1, 0, 0);
|
|
|
|
static if (3 == dim) const static Vector unitZ = Vector(0, 0, 1);
|
|
static if (4 == dim) const static Vector unitZ = Vector(0, 0, 1, 0);
|
|
|
|
static if (4 == dim) const static Vector unitW = Vector(0, 0, 0, 1);
|
|
|
|
|
|
/// ensure that no component is a NaN
|
|
invariant()
|
|
{
|
|
assert(isValid());
|
|
}
|
|
|
|
// checks if the elements aren't NaNs
|
|
private bool isValid() const
|
|
{
|
|
static if (dim >= 1) if (isNaN(x)) return false;
|
|
static if (dim >= 2) if (isNaN(y)) return false;
|
|
static if (dim >= 3) if (isNaN(z)) return false;
|
|
static if (dim >= 4) if (isNaN(w)) return false;
|
|
return true;
|
|
}
|
|
|
|
/************************************************************************************
|
|
* Operator overloading
|
|
***********************************************************************************/
|
|
|
|
/// negate the vector
|
|
Vector opUnary(string op : "-")()
|
|
{
|
|
static if (dim == 2) return Vector(-x, -y);
|
|
else static if (dim == 3) return Vector(-x, -y, -z);
|
|
else static if (dim == 4) return Vector(-x, -y, -z, -w);
|
|
}
|
|
|
|
/// dot product
|
|
T opBinary(string op : "*")(typeof(this) v)
|
|
if (is(typeof(T+T)) && is(typeof(T*T)))
|
|
{
|
|
static if (dim == 2) return x*v.x + y*v.y;
|
|
else static if (dim == 3) return x*v.x + y*v.y + z*v.z;
|
|
else static if (dim == 4) return x*v.x + y*v.y + z*v.z + w*v.w;
|
|
}
|
|
|
|
/// element-wise operations, +, -,
|
|
Vector opBinary(string op, U:typeof(this))(U v)
|
|
// check if the operation is supported on the type T
|
|
if (op != "*" && (op == "+" && is(typeof(T+T)) || op == "-" && is(typeof(T-T)) || op == "*" && is(typeof(T*T))
|
|
|| op == "/" && is(typeof(T/T)) || op == "%" && is(typeof(T%T))))
|
|
{
|
|
Vector res = void;
|
|
foreach (i, x; tuple)
|
|
mixin("res.tuple[i] = tuple[i] " ~ op ~ " v.tuple[i];");
|
|
return res;
|
|
}
|
|
|
|
/// operations with a scalar
|
|
// TODO: make this usable with arbitrary scalars (not only Vector element type T), including necessary checks etc.
|
|
typeof(this) opBinary(string op)(T s)
|
|
{
|
|
Vector res = void;
|
|
foreach(i, x; tuple)
|
|
mixin("res.tuple[i] = tuple[i] " ~ op ~ " s;");
|
|
return res;
|
|
}
|
|
|
|
/// element-wise assign operations, +=, -=, ...
|
|
Vector opOpAssign(string op, U:Vector)(U v)
|
|
{
|
|
foreach (i, _; tuple)
|
|
mixin("tuple[i] " ~ op ~ "= v.tuple[i];");
|
|
|
|
return this;
|
|
}
|
|
|
|
/// (*=) overload
|
|
Vector opOpAssign(string op)(T s)
|
|
{
|
|
foreach (i, _; tuple)
|
|
mixin("tuple[i] " ~ op ~ "= s;");
|
|
|
|
return this;
|
|
}
|
|
|
|
/// return length*length
|
|
@property LengthType sqLength()
|
|
{
|
|
static if (2 == dim) return (x * x + y * y);
|
|
else static if (3 == dim) return (x * x + y * y + z * z);
|
|
else static if (4 == dim) return (x * x + y * y + z * z + w * w);
|
|
else static assert (false);
|
|
}
|
|
|
|
/// return the vector length
|
|
@property LengthType length()
|
|
{
|
|
static if (useSSE)
|
|
{
|
|
static if (is(t == float) && dim == 3) // make sure that w is 0
|
|
assert(w == 0);
|
|
|
|
float res;
|
|
|
|
auto p = cell.ptr;
|
|
asm
|
|
{
|
|
// movups XMM0, &cell;
|
|
mov EAX, p;
|
|
movups XMM0, [EAX];
|
|
mulps XMM0, XMM0; // v0 = vec(x*x, y*y, z*z, w*w)
|
|
movaps XMM1, XMM0; // v1 = v0
|
|
shufps XMM0, XMM1, 0x4e; // v0 = vec(z*z, w*w, x*x, y*y)
|
|
addps XMM0, XMM1; // v0 = vec(x*x + z*z, y*y + w*w, z*z + x*x, w*w + y*y)
|
|
movaps XMM1, XMM0; // v1 = v0
|
|
shufps XMM1, XMM1, 0x11; // v1 = vec(w*w + y*y, z*z + x*x, w*w + y*y, z*z + x*x)
|
|
addps XMM0, XMM1; // v0 = |vec|^2 at all 4 positions
|
|
rsqrtss XMM0, XMM0; // v0 = 1/sqrt(v0)
|
|
rcpss XMM0, XMM0; // v= = 1/v0
|
|
movss res, XMM0;
|
|
}
|
|
return res;
|
|
}
|
|
else
|
|
{
|
|
// compute squared length
|
|
auto ret = sqLength();
|
|
|
|
// compute sqrt
|
|
version(useFastSqrt)
|
|
{
|
|
static if (is(T == float))
|
|
return fastSqrt(ret);
|
|
}
|
|
return sqrt(ret);
|
|
}
|
|
}
|
|
|
|
void normalize()
|
|
{
|
|
static if (useSSE)
|
|
{
|
|
static if (is(t == float) && dim == 3) // make sure that w is 0
|
|
assert (w == 0, "vector component w isn't 0!");
|
|
|
|
auto p = cell.ptr;
|
|
asm
|
|
{
|
|
mov EAX, p;
|
|
movups XMM0, [EAX];
|
|
movaps XMM2, XMM0; // save it for later
|
|
|
|
mulps XMM0, XMM0; // v0 = vec(x*x, y*y, z*z, w*w)
|
|
movaps XMM1, XMM0; // v1 = v0
|
|
shufps XMM0, XMM1, 0x4e; // v0 = vec(z*z, w*w, x*x, y*y)
|
|
addps XMM0, XMM1; // v0 = vec(x*x + z*z, y*y + w*w, z*z + x*x, w*w + y*y)
|
|
movaps XMM1, XMM0; // v1 = v0
|
|
shufps XMM1, XMM1, 0x11; // v1 = vec(w*w + y*y, z*z + x*x, w*w + y*y, z*z + x*x)
|
|
addps XMM0, XMM1; // v0 = |vec|^2 at all 4 positions
|
|
rsqrtps XMM0, XMM0; // v0 = 1/sqrt(v0)
|
|
mulps XMM2, XMM0; // v2 = vec * v0
|
|
|
|
movups [EAX], XMM0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
auto len = length();
|
|
foreach(i, _; tuple) // bug 2411 workaround, foreach ref on tuples doesn't work
|
|
tuple[i] /= len;
|
|
}
|
|
}
|
|
|
|
/// return normalized version of this vector
|
|
Vector normalized()
|
|
{
|
|
Vector res = this;
|
|
res.normalize();
|
|
return res;
|
|
}
|
|
|
|
///
|
|
string toString()
|
|
{
|
|
string res = "[";
|
|
|
|
res ~= to!(string)(x);
|
|
static if (dim >= 2) res ~= ", " ~ to!(string)(y);
|
|
static if (dim >= 3) res ~= ", " ~ to!(string)(z);
|
|
static if (dim >= 4) res ~= ", " ~ to!(string)(w);
|
|
|
|
return res ~ "]";
|
|
}
|
|
|
|
static if (is(T == float))
|
|
{
|
|
/// do a quick normalize using fast approximate inverse sqrt
|
|
void quickNormalize()
|
|
{
|
|
T inv = invSqrt(sqLength);
|
|
this *= inv;
|
|
}
|
|
|
|
/// return a normalized version of this vector
|
|
Vector quickNormalized()
|
|
{
|
|
auto res = this;
|
|
res.quickNormalize();
|
|
return res;
|
|
}
|
|
}
|
|
|
|
/// return a pointer to the vector data
|
|
@property T* ptr()
|
|
{
|
|
return &x;
|
|
}
|
|
|
|
/// calculate distance to other vector
|
|
LengthType distance(Vector!(T,dim) other)
|
|
{
|
|
assert (isValid);
|
|
assert (other.isValid);
|
|
other -= this;
|
|
return other.length;
|
|
}
|
|
|
|
///
|
|
bool opEquals(ref const Vector v) const
|
|
{
|
|
assert (isValid);
|
|
assert (v.isValid);
|
|
|
|
static if (dim >= 1) if (x != v.x) return false;
|
|
static if (dim >= 2) if (y != v.y) return false;
|
|
static if (dim >= 3) if (z != v.z) return false;
|
|
static if (dim >= 4) if (w != v.w) return false;
|
|
return true;
|
|
}
|
|
|
|
/// swizzling
|
|
@property Vector!(T,n.length) opDispatch(string n)() const
|
|
if (allCharsValid(n,"xyzw"[0..dim]))
|
|
{
|
|
static if (n.length == 2) return
|
|
Vector!(T,n.length)(cell[n[0]-'x'], cell[n[1]-'x']);
|
|
static if (n.length == 3) return
|
|
Vector!(T,n.length)(cell[n[0]-'x'], cell[n[1]-'x'], cell[n[2]-'x']);
|
|
static if (n.length == 4) return
|
|
Vector!(T,n.length)(cell[n[0]-'x'], cell[n[1]-'x'], cell[n[2]-'x'], cell[n[3]-'x']);
|
|
}
|
|
|
|
// helper function
|
|
static private bool allCharsValid( string s, string valid )
|
|
{
|
|
foreach ( e1; s )
|
|
{
|
|
bool b = false;
|
|
foreach (e2; valid)
|
|
b |= e1 == e2;
|
|
if (!b)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
///
|
|
bool isUnit()
|
|
{
|
|
real sql = cast(real)sqLength();
|
|
return abs(sql - 1.0) < 0.001;
|
|
}
|
|
|
|
}
|
|
|
|
/******* useful alias declarations *******/
|
|
|
|
alias Vector!(float, 2) Vector2f; ///
|
|
alias Vector!(float, 3) Vector3f; ///
|
|
alias Vector!(float, 4) Vector4f; ///
|
|
|
|
alias Vector!(double, 2) Vector2d; ///
|
|
alias Vector!(double, 3) Vector3d; ///
|
|
alias Vector!(double, 4) Vector4d; ///
|
|
|
|
alias Vector!(int, 2) Vector2i; ///
|
|
alias Vector!(int, 3) Vector3i; ///
|
|
alias Vector!(int, 4) Vector4i; ///
|
|
|
|
alias Vector!(uint, 2) Vector2ui; ///
|
|
alias Vector!(uint, 3) Vector3ui; ///
|
|
alias Vector!(uint, 4) Vector4ui; ///
|
|
|
|
alias Vector!(ushort, 2) Vector2us; ///
|
|
alias Vector!(ushort, 3) Vector3us; ///
|
|
alias Vector!(ushort, 4) Vector4us; ///
|
|
|
|
alias Vector!(ubyte, 2) Vector2ub; ///
|
|
alias Vector!(ubyte, 3) Vector3ub; ///
|
|
alias Vector!(ubyte, 4) Vector4ub; ///
|
|
|
|
|
|
// TODO: do all kinds of unittesting
|
|
unittest
|
|
{
|
|
Vector3f v = {1.5f, 1.f, 0.5f};
|
|
Vector3f w = {-1.f, 2.f, -0.5f};
|
|
|
|
assert(v.length - sqrt(3.5f) < 0.0001, sseAvailable ? "SSE length calculation failed" : "normal length calculation failed");
|
|
assert(w.length - sqrt(5.25f) < 0.0001, sseAvailable ? "SSE length calculation failed" : "normal length calculation failed");
|
|
|
|
assert(v+w == Vector3f(0.5f, 3.f, 0.f));
|
|
assert(v-w == Vector3f(2.5f, -1.f, 1.f));
|
|
|
|
auto r = v.xy;
|
|
writeln(r);
|
|
}
|
|
|
|
/**
|
|
* compute 1/sqrt(x)
|
|
* assumes x > 0
|
|
*
|
|
* Copyright (C) 2002-2006 Chris Lomont
|
|
* explanation on www.lomont.org
|
|
*/
|
|
float invSqrt(float x)
|
|
{
|
|
assert(x > 0);
|
|
|
|
float xhalf = 0.5f * x;
|
|
int i = *cast(int*)&x; // get bits for floating value
|
|
i = 0x5f375a86 - (i >> 1); // gives initial guess y0 with magic number
|
|
x = *cast(float*)&i; // convert bits back to float
|
|
x = x*(1.5f - xhalf * x * x); // Newton step, repeating increases accuracy
|
|
return x;
|
|
}
|
|
|
|
|
|
/**
|
|
* compute sqrt(x)
|
|
* assumes x >= 0
|
|
*/
|
|
float fastSqrt(float x)
|
|
{
|
|
assert(x >= 0);
|
|
|
|
int i = *cast(int*) &x;
|
|
if (0 == ((i >> 23)&255))
|
|
return 0; // close
|
|
return x * invSqrt(x);
|
|
}
|
|
|
|
// get the correct return type for the length function
|
|
private template LengthReturnType(T)
|
|
{
|
|
static if (is(T == float) || is(T == double) || is(T == real))
|
|
alias T LengthReturnType;
|
|
else
|
|
alias float LengthReturnType;
|
|
}
|
|
|
|
/// repeat a type count times
|
|
template Repeat(T, int count)
|
|
{
|
|
static if (!count)
|
|
alias TypeTuple!() Repeat;
|
|
else
|
|
alias TypeTuple!(T, Repeat!(T, count-1)) Repeat;
|
|
}
|
|
|
|
// determine SSE usability
|
|
// TODO: make more sophisticated
|
|
version(X86)
|
|
version(D_InlineAsm_X86)
|
|
const bool sseAvailable = is(typeof({void* foo; asm { mov EAX, foo; movups XMM0, [EAX]; } }));
|
|
version(X86_64)
|
|
version(D_InlineAsm_X86_64)
|
|
const bool sseAvailable = false; // TODO: add this
|