SFML/examples/island/Island.cpp

591 lines
20 KiB
C++
Raw Normal View History

////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#define STB_PERLIN_IMPLEMENTATION
#include "stb_perlin.h"
#include <SFML/Graphics.hpp>
#include <vector>
#include <deque>
#include <sstream>
#include <algorithm>
#include <cstring>
#include <cmath>
namespace
{
// Width and height of the application window
const unsigned int windowWidth = 800;
const unsigned int windowHeight = 600;
// Resolution of the generated terrain
const unsigned int resolutionX = 800;
const unsigned int resolutionY = 600;
// Thread pool parameters
const unsigned int threadCount = 4;
const unsigned int blockCount = 32;
struct WorkItem
{
sf::Vertex* targetBuffer;
unsigned int index;
};
std::deque<WorkItem> workQueue;
std::vector<sf::Thread*> threads;
int pendingWorkCount = 0;
bool workPending = true;
bool bufferUploadPending = false;
sf::Mutex workQueueMutex;
struct Setting
{
const char* name;
float* value;
};
// Terrain noise parameters
const int perlinOctaves = 3;
float perlinFrequency = 7.0f;
float perlinFrequencyBase = 4.0f;
// Terrain generation parameters
float heightBase = 0.0f;
float edgeFactor = 0.9f;
float edgeDropoffExponent = 1.5f;
float snowcapHeight = 0.6f;
// Terrain lighting parameters
float heightFactor = windowHeight / 2.0f;
float heightFlatten = 3.0f;
float lightFactor = 0.7f;
}
// Forward declarations of the functions we define further down
void threadFunction();
void generateTerrain(sf::Vertex* vertexBuffer);
////////////////////////////////////////////////////////////
/// Entry point of application
///
/// \return Application exit code
///
////////////////////////////////////////////////////////////
int main()
{
// Create the window of the application
sf::RenderWindow window(sf::VideoMode(windowWidth, windowHeight), "SFML Island",
sf::Style::Titlebar | sf::Style::Close);
window.setVerticalSyncEnabled(true);
sf::Font font;
if (!font.loadFromFile("resources/tuffy.ttf"))
return EXIT_FAILURE;
// Create all of our graphics resources
sf::Text hudText;
sf::Text statusText;
sf::Shader terrainShader;
sf::RenderStates terrainStates(&terrainShader);
sf::VertexBuffer terrain(sf::Triangles, sf::VertexBuffer::Static);
// Set up our text drawables
statusText.setFont(font);
statusText.setCharacterSize(28);
statusText.setFillColor(sf::Color::White);
statusText.setOutlineColor(sf::Color::Black);
statusText.setOutlineThickness(2.0f);
hudText.setFont(font);
hudText.setCharacterSize(14);
hudText.setFillColor(sf::Color::White);
hudText.setOutlineColor(sf::Color::Black);
hudText.setOutlineThickness(2.0f);
hudText.setPosition(5.0f, 5.0f);
// Staging buffer for our terrain data that we will upload to our VertexBuffer
std::vector<sf::Vertex> terrainStagingBuffer;
// Check whether the prerequisites are suppprted
bool prerequisitesSupported = sf::VertexBuffer::isAvailable() && sf::Shader::isAvailable();
// Set up our graphics resources and set the status text accordingly
if (!prerequisitesSupported)
{
statusText.setString("Shaders and/or Vertex Buffers Unsupported");
}
else if (!terrainShader.loadFromFile("resources/terrain.vert", "resources/terrain.frag"))
{
prerequisitesSupported = false;
statusText.setString("Failed to load shader program");
}
else
{
// Start up our thread pool
for (unsigned int i = 0; i < threadCount; i++)
{
threads.push_back(new sf::Thread(threadFunction));
threads.back()->launch();
}
// Create our VertexBuffer with enough space to hold all the terrain geometry
terrain.create(resolutionX * resolutionY * 6);
// Resize the staging buffer to be able to hold all the terrain geometry
terrainStagingBuffer.resize(resolutionX * resolutionY * 6);
// Generate the initial terrain
generateTerrain(&terrainStagingBuffer[0]);
statusText.setString("Generating Terrain...");
}
// Center the status text
statusText.setPosition((windowWidth - statusText.getLocalBounds().width) / 2.f, (windowHeight - statusText.getLocalBounds().height) / 2.f);
// Set up an array of pointers to our settings for arrow navigation
Setting settings[] =
{
{"perlinFrequency", &perlinFrequency},
{"perlinFrequencyBase", &perlinFrequencyBase},
{"heightBase", &heightBase},
{"edgeFactor", &edgeFactor},
{"edgeDropoffExponent", &edgeDropoffExponent},
{"snowcapHeight", &snowcapHeight},
{"heightFactor", &heightFactor},
{"heightFlatten", &heightFlatten},
{"lightFactor", &lightFactor}
};
const int settingCount = 9;
int currentSetting = 0;
std::ostringstream osstr;
sf::Clock clock;
while (window.isOpen())
{
// Handle events
sf::Event event;
while (window.pollEvent(event))
{
// Window closed or escape key pressed: exit
if ((event.type == sf::Event::Closed) ||
((event.type == sf::Event::KeyPressed) && (event.key.code == sf::Keyboard::Escape)))
{
window.close();
break;
}
// Arrow key pressed:
if (prerequisitesSupported && (event.type == sf::Event::KeyPressed))
{
switch (event.key.code)
{
case sf::Keyboard::Return: generateTerrain(&terrainStagingBuffer[0]); break;
case sf::Keyboard::Down: currentSetting = (currentSetting + 1) % settingCount; break;
case sf::Keyboard::Up: currentSetting = (currentSetting + settingCount - 1) % settingCount; break;
case sf::Keyboard::Left: *(settings[currentSetting].value) -= 0.1f; break;
case sf::Keyboard::Right: *(settings[currentSetting].value) += 0.1f; break;
default: break;
}
}
}
// Clear, draw graphics objects and display
window.clear();
window.draw(statusText);
if (prerequisitesSupported)
{
{
sf::Lock lock(workQueueMutex);
// Don't bother updating/drawing the VertexBuffer while terrain is being regenerated
if (!pendingWorkCount)
{
// If there is new data pending to be uploaded to the VertexBuffer, do it now
if (bufferUploadPending)
{
terrain.update(&terrainStagingBuffer[0]);
bufferUploadPending = false;
}
terrainShader.setUniform("lightFactor", lightFactor);
window.draw(terrain, terrainStates);
}
}
// Update and draw the HUD text
osstr.str("");
osstr << "Frame: " << clock.restart().asMilliseconds() << "ms\n"
<< "perlinOctaves: " << perlinOctaves << "\n\n"
<< "Use the arrow keys to change the values.\nUse the return key to regenerate the terrain.\n\n";
for (int i = 0; i < settingCount; ++i)
osstr << ((i == currentSetting) ? ">> " : " ") << settings[i].name << ": " << *(settings[i].value) << "\n";
hudText.setString(osstr.str());
window.draw(hudText);
}
// Display things on screen
window.display();
}
// Shut down our thread pool
{
sf::Lock lock(workQueueMutex);
workPending = false;
}
while (!threads.empty())
{
threads.back()->wait();
delete threads.back();
threads.pop_back();
}
return EXIT_SUCCESS;
}
////////////////////////////////////////////////////////////
/// Get the terrain elevation at the given coordinates.
///
////////////////////////////////////////////////////////////
float getElevation(float x, float y)
{
x = x / resolutionX - 0.5f;
y = y / resolutionY - 0.5f;
float elevation = 0.0f;
for (int i = 0; i < perlinOctaves; i++)
{
elevation += stb_perlin_noise3(
x * perlinFrequency * std::pow(perlinFrequencyBase, i),
y * perlinFrequency * std::pow(perlinFrequencyBase, i),
0, 0, 0, 0
) * std::pow(perlinFrequencyBase, -i);
}
elevation = (elevation + 1.f) / 2.f;
float distance = 2.0f * std::sqrt(x * x + y * y);
elevation = (elevation + heightBase) * (1.0f - edgeFactor * std::pow(distance, edgeDropoffExponent));
elevation = std::min(std::max(elevation, 0.0f), 1.0f);
return elevation;
}
////////////////////////////////////////////////////////////
/// Get the terrain moisture at the given coordinates.
///
////////////////////////////////////////////////////////////
float getMoisture(float x, float y)
{
x = x / resolutionX - 0.5f;
y = y / resolutionY - 0.5f;
float moisture = stb_perlin_noise3(
x * 4.f + 0.5f,
y * 4.f + 0.5f,
0, 0, 0, 0
);
return (moisture + 1.f) / 2.f;
}
////////////////////////////////////////////////////////////
/// Get the lowlands terrain color for the given moisture.
///
////////////////////////////////////////////////////////////
sf::Color getLowlandsTerrainColor(float moisture)
{
sf::Color color =
moisture < 0.27f ? sf::Color(240, 240, 180) :
moisture < 0.3f ? sf::Color(240 - 240 * (moisture - 0.27f) / 0.03f, 240 - 40 * (moisture - 0.27f) / 0.03f, 180 - 180 * (moisture - 0.27f) / 0.03f) :
moisture < 0.4f ? sf::Color(0, 200, 0) :
moisture < 0.48f ? sf::Color(0, 200 - 40 * (moisture - 0.4f) / 0.08f, 0) :
moisture < 0.6f ? sf::Color(0, 160, 0) :
moisture < 0.7f ? sf::Color(34 * (moisture - 0.6f) / 0.1f, 160 - 60 * (moisture - 0.6f) / 0.1f, 34 * (moisture - 0.6f) / 0.1f) :
sf::Color(34, 100, 34);
return color;
}
////////////////////////////////////////////////////////////
/// Get the highlands terrain color for the given elevation
/// and moisture.
///
////////////////////////////////////////////////////////////
sf::Color getHighlandsTerrainColor(float elevation, float moisture)
{
sf::Color lowlandsColor = getLowlandsTerrainColor(moisture);
sf::Color color =
moisture < 0.6f ? sf::Color(112, 128, 144) :
sf::Color(112 + 110 * (moisture - 0.6f) / 0.4f, 128 + 56 * (moisture - 0.6f) / 0.4f, 144 - 9 * (moisture - 0.6f) / 0.4f);
float factor = std::min((elevation - 0.4f) / 0.1f, 1.f);
color.r = lowlandsColor.r * (1.f - factor) + color.r * factor;
color.g = lowlandsColor.g * (1.f - factor) + color.g * factor;
color.b = lowlandsColor.b * (1.f - factor) + color.b * factor;
return color;
}
////////////////////////////////////////////////////////////
/// Get the snowcap terrain color for the given elevation
/// and moisture.
///
////////////////////////////////////////////////////////////
sf::Color getSnowcapTerrainColor(float elevation, float moisture)
{
sf::Color highlandsColor = getHighlandsTerrainColor(elevation, moisture);
sf::Color color = sf::Color::White;
float factor = std::min((elevation - snowcapHeight) / 0.05f, 1.f);
color.r = highlandsColor.r * (1.f - factor) + color.r * factor;
color.g = highlandsColor.g * (1.f - factor) + color.g * factor;
color.b = highlandsColor.b * (1.f - factor) + color.b * factor;
return color;
}
////////////////////////////////////////////////////////////
/// Get the terrain color for the given elevation and
/// moisture.
///
////////////////////////////////////////////////////////////
sf::Color getTerrainColor(float elevation, float moisture)
{
sf::Color color =
elevation < 0.11f ? sf::Color(0, 0, elevation / 0.11f * 74.f + 181.0f) :
elevation < 0.14f ? sf::Color(std::pow((elevation - 0.11f) / 0.03f, 0.3f) * 48.f, std::pow((elevation - 0.11f) / 0.03f, 0.3f) * 48.f, 255) :
elevation < 0.16f ? sf::Color((elevation - 0.14f) * 128.f / 0.02f + 48.f, (elevation - 0.14f) * 128.f / 0.02f + 48.f, 127.0f + (0.16f - elevation) * 128.f / 0.02f) :
elevation < 0.17f ? sf::Color(240, 230, 140) :
elevation < 0.4f ? getLowlandsTerrainColor(moisture) :
elevation < snowcapHeight ? getHighlandsTerrainColor(elevation, moisture) :
getSnowcapTerrainColor(elevation, moisture);
return color;
}
////////////////////////////////////////////////////////////
/// Compute a compressed representation of the surface
/// normal based on the given coordinates, and the elevation
/// of the 4 adjacent neighbours.
///
////////////////////////////////////////////////////////////
sf::Vector2f computeNormal(int x, int y, float left, float right, float bottom, float top)
{
sf::Vector3f deltaX(1, 0, (std::pow(right, heightFlatten) - std::pow(left, heightFlatten)) * heightFactor);
sf::Vector3f deltaY(0, 1, (std::pow(top, heightFlatten) - std::pow(bottom, heightFlatten)) * heightFactor);
sf::Vector3f crossProduct(
deltaX.y * deltaY.z - deltaX.z * deltaY.y,
deltaX.z * deltaY.x - deltaX.x * deltaY.z,
deltaX.x * deltaY.y - deltaX.y * deltaY.x
);
// Scale cross product to make z component 1.0f so we can drop it
crossProduct /= crossProduct.z;
// Return "compressed" normal
return sf::Vector2f(crossProduct.x, crossProduct.y);
}
////////////////////////////////////////////////////////////
/// Process a terrain generation work item. Use the vector
/// of vertices as scratch memory and upload the data to
/// the vertex buffer when done.
///
////////////////////////////////////////////////////////////
void processWorkItem(std::vector<sf::Vertex>& vertices, const WorkItem& workItem)
{
unsigned int rowBlockSize = (resolutionY / blockCount) + 1;
unsigned int rowStart = rowBlockSize * workItem.index;
if (rowStart >= resolutionY)
return;
unsigned int rowEnd = std::min(rowStart + rowBlockSize, resolutionY);
unsigned int rowCount = rowEnd - rowStart;
const float scalingFactorX = static_cast<float>(windowWidth) / static_cast<float>(resolutionX);
const float scalingFactorY = static_cast<float>(windowHeight) / static_cast<float>(resolutionY);
for (unsigned int y = rowStart; y < rowEnd; y++)
{
for (int x = 0; x < resolutionX; x++)
{
int arrayIndexBase = ((y - rowStart) * resolutionX + x) * 6;
// Top left corner (first triangle)
if (x > 0)
{
vertices[arrayIndexBase + 0] = vertices[arrayIndexBase - 6 + 5];
}
else if (y > rowStart)
{
vertices[arrayIndexBase + 0] = vertices[arrayIndexBase - resolutionX * 6 + 1];
}
else
{
vertices[arrayIndexBase + 0].position = sf::Vector2f(x * scalingFactorX, y * scalingFactorY);
vertices[arrayIndexBase + 0].color = getTerrainColor(getElevation(x, y), getMoisture(x, y));
vertices[arrayIndexBase + 0].texCoords = computeNormal(x, y, getElevation(x - 1, y), getElevation(x + 1, y), getElevation(x, y + 1), getElevation(x, y - 1));
}
// Bottom left corner (first triangle)
if (x > 0)
{
vertices[arrayIndexBase + 1] = vertices[arrayIndexBase - 6 + 2];
}
else
{
vertices[arrayIndexBase + 1].position = sf::Vector2f(x * scalingFactorX, (y + 1) * scalingFactorY);
vertices[arrayIndexBase + 1].color = getTerrainColor(getElevation(x, y + 1), getMoisture(x, y + 1));
vertices[arrayIndexBase + 1].texCoords = computeNormal(x, y + 1, getElevation(x - 1, y + 1), getElevation(x + 1, y + 1), getElevation(x, y + 2), getElevation(x, y));
}
// Bottom right corner (first triangle)
vertices[arrayIndexBase + 2].position = sf::Vector2f((x + 1) * scalingFactorX, (y + 1) * scalingFactorY);
vertices[arrayIndexBase + 2].color = getTerrainColor(getElevation(x + 1, y + 1), getMoisture(x + 1, y + 1));
vertices[arrayIndexBase + 2].texCoords = computeNormal(x + 1, y + 1, getElevation(x, y + 1), getElevation(x + 2, y + 1), getElevation(x + 1, y + 2), getElevation(x + 1, y));
// Top left corner (second triangle)
vertices[arrayIndexBase + 3] = vertices[arrayIndexBase + 0];
// Bottom right corner (second triangle)
vertices[arrayIndexBase + 4] = vertices[arrayIndexBase + 2];
// Top right corner (second triangle)
if (y > rowStart)
{
vertices[arrayIndexBase + 5] = vertices[arrayIndexBase - resolutionX * 6 + 2];
}
else
{
vertices[arrayIndexBase + 5].position = sf::Vector2f((x + 1) * scalingFactorX, y * scalingFactorY);
vertices[arrayIndexBase + 5].color = getTerrainColor(getElevation(x + 1, y), getMoisture(x + 1, y));
vertices[arrayIndexBase + 5].texCoords = computeNormal(x + 1, y, getElevation(x, y), getElevation(x + 2, y), getElevation(x + 1, y + 1), getElevation(x + 1, y - 1));
}
}
}
// Copy the resulting geometry from our thread-local buffer into the target buffer
std::memcpy(workItem.targetBuffer + (resolutionX * rowStart * 6), &vertices[0], sizeof(sf::Vertex) * resolutionX * rowCount * 6);
}
////////////////////////////////////////////////////////////
/// Worker thread entry point. We use a thread pool to avoid
/// the heavy cost of constantly recreating and starting
/// new threads whenever we need to regenerate the terrain.
///
////////////////////////////////////////////////////////////
void threadFunction()
{
unsigned int rowBlockSize = (resolutionY / blockCount) + 1;
std::vector<sf::Vertex> vertices(resolutionX * rowBlockSize * 6);
WorkItem workItem = {0, 0};
// Loop until the application exits
for (;;)
{
workItem.targetBuffer = 0;
// Check if there are new work items in the queue
{
sf::Lock lock(workQueueMutex);
if (!workPending)
return;
if (!workQueue.empty())
{
workItem = workQueue.front();
workQueue.pop_front();
}
}
// If we didn't receive a new work item, keep looping
if (!workItem.targetBuffer)
{
sf::sleep(sf::milliseconds(10));
continue;
}
processWorkItem(vertices, workItem);
{
sf::Lock lock(workQueueMutex);
--pendingWorkCount;
}
}
}
////////////////////////////////////////////////////////////
/// Terrain generation entry point. This queues up the
/// generation work items which the worker threads dequeue
/// and process.
///
////////////////////////////////////////////////////////////
void generateTerrain(sf::Vertex* buffer)
{
bufferUploadPending = true;
// Make sure the work queue is empty before queuing new work
for (;;)
{
{
sf::Lock lock(workQueueMutex);
if (workQueue.empty())
break;
}
sf::sleep(sf::milliseconds(10));
}
// Queue all the new work items
{
sf::Lock lock(workQueueMutex);
for (unsigned int i = 0; i < blockCount; i++)
{
WorkItem workItem = {buffer, i};
workQueue.push_back(workItem);
}
pendingWorkCount = blockCount;
}
}