SFML/examples/sound_effects/SoundEffects.cpp

1226 lines
41 KiB
C++
Raw Normal View History

2024-03-25 07:06:21 +08:00
////////////////////////////////////////////////////////////
// Headers
////////////////////////////////////////////////////////////
#include <SFML/Graphics.hpp>
#include <SFML/Audio.hpp>
#include <algorithm>
2024-05-15 09:00:19 +08:00
#include <iostream>
2024-03-25 07:06:21 +08:00
#include <limits>
#include <memory>
#include <vector>
#include <cmath>
#include <cstdlib>
2024-03-25 07:06:21 +08:00
namespace
{
constexpr auto windowWidth = 800u;
constexpr auto windowHeight = 600u;
constexpr auto pi = 3.14159265359f;
constexpr auto sqrt2 = 2.0f * 0.707106781186547524401f;
2024-03-25 07:06:21 +08:00
std::filesystem::path resourcesDir()
{
#ifdef SFML_SYSTEM_IOS
return "";
#else
return "resources";
#endif
}
} // namespace
////////////////////////////////////////////////////////////
// Base class for effects
////////////////////////////////////////////////////////////
class Effect : public sf::Drawable
{
public:
static void setFont(const sf::Font& font)
{
s_font = &font;
}
const std::string& getName() const
{
return m_name;
}
void update(float time, float x, float y)
{
onUpdate(time, x, y);
}
void draw(sf::RenderTarget& target, sf::RenderStates states) const override
{
onDraw(target, states);
}
void start()
{
onStart();
}
void stop()
{
onStop();
}
void handleKey(sf::Keyboard::Key key)
{
onKey(key);
}
protected:
Effect(std::string name) : m_name(std::move(name))
{
}
static const sf::Font& getFont()
{
assert(s_font != nullptr && "Cannot get font until setFont() is called");
return *s_font;
}
private:
// Virtual functions to be implemented in derived effects
virtual void onUpdate(float time, float x, float y) = 0;
virtual void onDraw(sf::RenderTarget& target, sf::RenderStates states) const = 0;
virtual void onStart() = 0;
virtual void onStop() = 0;
2024-03-25 07:06:21 +08:00
virtual void onKey(sf::Keyboard::Key)
{
}
std::string m_name;
// NOLINTNEXTLINE(readability-identifier-naming)
static inline const sf::Font* s_font{nullptr};
};
////////////////////////////////////////////////////////////
// Surround Sound / Positional Audio Effect / Attenuation
////////////////////////////////////////////////////////////
class Surround : public Effect
{
public:
Surround() : Effect("Surround / Attenuation")
{
m_listener.setPosition({(windowWidth - 20.f) / 2.f, (windowHeight - 20.f) / 2.f});
m_listener.setFillColor(sf::Color::Red);
// Load the music file
if (!(m_music = sf::Music::openFromFile(resourcesDir() / "doodle_pop.ogg")))
{
2024-05-15 09:00:19 +08:00
std::cerr << "Failed to load " << (resourcesDir() / "doodle_pop.ogg").string() << std::endl;
std::abort();
}
2024-03-25 07:06:21 +08:00
// Set the music to loop
m_music->setLoop(true);
2024-03-25 07:06:21 +08:00
// Set attenuation to a nice value
m_music->setAttenuation(0.04f);
2024-03-25 07:06:21 +08:00
}
void onUpdate(float /*time*/, float x, float y) override
{
m_position = {windowWidth * x - 10.f, windowHeight * y - 10.f};
m_music->setPosition({m_position.x, m_position.y, 0.f});
2024-03-25 07:06:21 +08:00
}
void onDraw(sf::RenderTarget& target, sf::RenderStates states) const override
2024-03-25 07:06:21 +08:00
{
auto statesCopy(states);
statesCopy.transform = sf::Transform::Identity;
statesCopy.transform.translate(m_position);
target.draw(m_listener, states);
target.draw(m_soundShape, statesCopy);
}
void onStart() override
{
// Synchronize listener audio position with graphical position
sf::Listener::setPosition({m_listener.getPosition().x, m_listener.getPosition().y, 0.f});
m_music->play();
2024-03-25 07:06:21 +08:00
}
void onStop() override
{
m_music->stop();
2024-03-25 07:06:21 +08:00
}
private:
sf::CircleShape m_listener{20.f};
sf::CircleShape m_soundShape{20.f};
sf::Vector2f m_position;
std::optional<sf::Music> m_music;
2024-03-25 07:06:21 +08:00
};
////////////////////////////////////////////////////////////
// Pitch / Volume Effect
////////////////////////////////////////////////////////////
class PitchVolume : public Effect
{
public:
PitchVolume() :
Effect("Pitch / Volume"),
m_pitchText(getFont(), "Pitch: " + std::to_string(m_pitch)),
m_volumeText(getFont(), "Volume: " + std::to_string(m_volume))
{
// Load the music file
if (!(m_music = sf::Music::openFromFile(resourcesDir() / "doodle_pop.ogg")))
{
2024-05-15 09:00:19 +08:00
std::cerr << "Failed to load " << (resourcesDir() / "doodle_pop.ogg").string() << std::endl;
std::abort();
}
2024-03-25 07:06:21 +08:00
// Set the music to loop
m_music->setLoop(true);
2024-03-25 07:06:21 +08:00
// We don't care about attenuation in this effect
m_music->setAttenuation(0.f);
2024-03-25 07:06:21 +08:00
// Set initial pitch
m_music->setPitch(m_pitch);
2024-03-25 07:06:21 +08:00
// Set initial volume
m_music->setVolume(m_volume);
2024-03-25 07:06:21 +08:00
m_pitchText.setPosition({windowWidth / 2.f - 120.f, windowHeight / 2.f - 80.f});
m_volumeText.setPosition({windowWidth / 2.f - 120.f, windowHeight / 2.f - 30.f});
}
void onUpdate(float /*time*/, float x, float y) override
{
m_pitch = std::clamp(2.f * x, 0.f, 2.f);
m_volume = std::clamp(100.f * (1.f - y), 0.f, 100.f);
m_music->setPitch(m_pitch);
m_music->setVolume(m_volume);
2024-03-25 07:06:21 +08:00
m_pitchText.setString("Pitch: " + std::to_string(m_pitch));
m_volumeText.setString("Volume: " + std::to_string(m_volume));
}
void onDraw(sf::RenderTarget& target, sf::RenderStates states) const override
2024-03-25 07:06:21 +08:00
{
target.draw(m_pitchText, states);
target.draw(m_volumeText, states);
}
void onStart() override
{
// We set the listener position back to the default
// so that the music is right on top of the listener
sf::Listener::setPosition({0.f, 0.f, 0.f});
m_music->play();
2024-03-25 07:06:21 +08:00
}
void onStop() override
{
m_music->stop();
2024-03-25 07:06:21 +08:00
}
private:
float m_pitch{1.f};
float m_volume{100.f};
sf::Text m_pitchText;
sf::Text m_volumeText;
std::optional<sf::Music> m_music;
2024-03-25 07:06:21 +08:00
};
////////////////////////////////////////////////////////////
// Attenuation Effect
////////////////////////////////////////////////////////////
class Attenuation : public Effect
{
public:
Attenuation() : Effect("Attenuation"), m_text(getFont())
{
m_listener.setPosition({(windowWidth - 20.f) / 2.f, (windowHeight - 20.f) / 2.f + 100.f});
m_listener.setFillColor(sf::Color::Red);
m_soundShape.setFillColor(sf::Color::Magenta);
// Sound cone parameters
static constexpr auto coneHeight = windowHeight * 2.f;
static constexpr auto outerConeAngle = sf::degrees(120.f);
static constexpr auto innerConeAngle = sf::degrees(30.f);
// Set common properties of both cones
for (auto* cone : {&m_soundConeOuter, &m_soundConeInner})
{
cone->setPointCount(3);
cone->setPoint(0, {0.f, 0.f});
cone->setPosition({20.f, 20.f});
}
m_soundConeOuter.setFillColor(sf::Color::Black);
m_soundConeInner.setFillColor(sf::Color::Cyan);
// Make each cone based on their angle and height
static constexpr auto makeCone = [](auto& shape, const auto& angle)
{
const auto theta = sf::degrees(90.f) - (angle / 2);
const auto x = coneHeight / std::tan(theta.asRadians());
shape.setPoint(1, {-x, coneHeight});
shape.setPoint(2, {x, coneHeight});
};
makeCone(m_soundConeOuter, outerConeAngle);
makeCone(m_soundConeInner, innerConeAngle);
// Load the music file
if (!(m_music = sf::Music::openFromFile(resourcesDir() / "doodle_pop.ogg")))
{
2024-05-15 09:00:19 +08:00
std::cerr << "Failed to load " << (resourcesDir() / "doodle_pop.ogg").string() << std::endl;
std::abort();
}
2024-03-25 07:06:21 +08:00
// Set the music to loop
m_music->setLoop(true);
2024-03-25 07:06:21 +08:00
// Set attenuation factor
m_music->setAttenuation(m_attenuation);
2024-03-25 07:06:21 +08:00
// Set direction to face "downwards"
m_music->setDirection({0.f, 1.f, 0.f});
2024-03-25 07:06:21 +08:00
// Set cone
m_music->setCone({innerConeAngle, outerConeAngle, 0.f});
2024-03-25 07:06:21 +08:00
m_text.setString(
"Attenuation factor dampens full volume of sound while within inner cone based on distance to "
"listener.\nCone outer gain determines "
"volume of sound while outside outer cone.\nWhen within outer cone, volume is linearly interpolated "
"between "
"inner and outer volumes.");
m_text.setCharacterSize(18);
m_text.setPosition({20.f, 20.f});
}
void onUpdate(float /*time*/, float x, float y) override
{
m_position = {windowWidth * x - 10.f, windowHeight * y - 10.f};
m_music->setPosition({m_position.x, m_position.y, 0.f});
2024-03-25 07:06:21 +08:00
}
void onDraw(sf::RenderTarget& target, sf::RenderStates states) const override
2024-03-25 07:06:21 +08:00
{
auto statesCopy(states);
statesCopy.transform = sf::Transform::Identity;
statesCopy.transform.translate(m_position);
target.draw(m_soundConeOuter, statesCopy);
target.draw(m_soundConeInner, statesCopy);
target.draw(m_soundShape, statesCopy);
target.draw(m_listener, states);
target.draw(m_text, states);
}
void onStart() override
{
// Synchronize listener audio position with graphical position
sf::Listener::setPosition({m_listener.getPosition().x, m_listener.getPosition().y, 0.f});
m_music->play();
2024-03-25 07:06:21 +08:00
}
void onStop() override
{
m_music->stop();
2024-03-25 07:06:21 +08:00
}
private:
sf::CircleShape m_listener{20.f};
sf::CircleShape m_soundShape{20.f};
sf::ConvexShape m_soundConeOuter;
sf::ConvexShape m_soundConeInner;
sf::Text m_text;
sf::Vector2f m_position;
std::optional<sf::Music> m_music;
2024-03-25 07:06:21 +08:00
float m_attenuation{0.01f};
};
////////////////////////////////////////////////////////////
// Tone Generator
////////////////////////////////////////////////////////////
class Tone : public sf::SoundStream, public Effect
{
public:
Tone() :
Effect("Tone Generator"),
m_instruction(getFont(), "Press up and down arrows to change the current wave type"),
m_currentType(getFont(), "Wave Type: Triangle"),
m_currentAmplitude(getFont(), "Amplitude: 0.05"),
m_currentFrequency(getFont(), "Frequency: 200 Hz")
{
m_instruction.setPosition({windowWidth / 2.f - 370.f, windowHeight / 2.f - 200.f});
m_currentType.setPosition({windowWidth / 2.f - 150.f, windowHeight / 2.f - 100.f});
m_currentAmplitude.setPosition({windowWidth / 2.f - 150.f, windowHeight / 2.f - 50.f});
m_currentFrequency.setPosition({windowWidth / 2.f - 150.f, windowHeight / 2.f});
sf::SoundStream::initialize(1, sampleRate, {sf::SoundChannel::Mono});
}
void onUpdate(float /*time*/, float x, float y) override
{
m_amplitude = std::clamp(0.2f * (1.f - y), 0.f, 0.2f);
m_frequency = std::clamp(500.f * x, 0.f, 500.f);
m_currentAmplitude.setString("Amplitude: " + std::to_string(m_amplitude));
m_currentFrequency.setString("Frequency: " + std::to_string(m_frequency) + " Hz");
}
void onDraw(sf::RenderTarget& target, sf::RenderStates states) const override
2024-03-25 07:06:21 +08:00
{
target.draw(m_instruction, states);
target.draw(m_currentType, states);
target.draw(m_currentAmplitude, states);
target.draw(m_currentFrequency, states);
}
void onStart() override
{
// We set the listener position back to the default
// so that the tone is right on top of the listener
sf::Listener::setPosition({0.f, 0.f, 0.f});
play();
}
void onStop() override
{
SoundStream::stop();
}
void onKey(sf::Keyboard::Key key) override
{
auto ticks = 0;
if (key == sf::Keyboard::Key::Down)
ticks = 1; // Forward
else if (key == sf::Keyboard::Key::Up)
ticks = 3; // Reverse
while (ticks--)
{
switch (m_type)
{
case Type::Sine:
m_type = Type::Square;
m_currentType.setString("Wave Type: Square");
break;
case Type::Square:
m_type = Type::Triangle;
m_currentType.setString("Wave Type: Triangle");
break;
case Type::Triangle:
m_type = Type::Sawtooth;
m_currentType.setString("Wave Type: Sawtooth");
break;
case Type::Sawtooth:
m_type = Type::Sine;
m_currentType.setString("Wave Type: Sine");
break;
}
}
}
private:
bool onGetData(sf::SoundStream::Chunk& chunk) override
{
const auto period = 1.f / m_frequency;
for (auto i = 0u; i < chunkSize; ++i)
{
auto value = 0.f;
switch (m_type)
{
case Type::Sine:
{
value = m_amplitude * std::sin(2 * pi * m_frequency * m_time);
break;
}
case Type::Square:
{
value = m_amplitude *
(2 * (2 * std::floor(m_frequency * m_time) - std::floor(2 * m_frequency * m_time)) + 1);
break;
}
case Type::Triangle:
{
value = 4 * m_amplitude / period *
std::abs(std::fmod(((std::fmod((m_time - period / 4), period)) + period), period) -
period / 2) -
m_amplitude;
break;
}
case Type::Sawtooth:
{
value = m_amplitude * 2 * (m_time / period - std::floor(0.5f + m_time / period));
break;
}
}
m_sampleBuffer[i] = static_cast<std::int16_t>(std::lround(value * std::numeric_limits<std::int16_t>::max()));
m_time += timePerSample;
}
chunk.sampleCount = chunkSize;
chunk.samples = m_sampleBuffer.data();
return true;
}
void onSeek(sf::Time) override
{
// It doesn't make sense to seek in a tone generator
}
enum class Type
{
Sine,
Square,
Triangle,
Sawtooth
};
static constexpr unsigned int sampleRate{44100};
static constexpr std::size_t chunkSize{sampleRate / 100};
2024-05-17 10:56:30 +08:00
static constexpr float timePerSample{1.f / float{sampleRate}};
2024-03-25 07:06:21 +08:00
std::vector<std::int16_t> m_sampleBuffer = std::vector<std::int16_t>(chunkSize, 0);
Type m_type{Type::Triangle};
float m_amplitude{0.05f};
float m_frequency{220};
float m_time{};
sf::Text m_instruction;
sf::Text m_currentType;
sf::Text m_currentAmplitude;
sf::Text m_currentFrequency;
};
////////////////////////////////////////////////////////////
// Dopper Shift Effect
////////////////////////////////////////////////////////////
class Doppler : public sf::SoundStream, public Effect
{
public:
Doppler() :
Effect("Doppler Shift"),
m_currentVelocity(getFont(), "Velocity: " + std::to_string(m_velocity)),
m_currentFactor(getFont(), "Doppler Factor: " + std::to_string(m_factor))
{
m_listener.setPosition({(windowWidth - 20.f) / 2.f, (windowHeight - 20.f) / 2.f});
m_listener.setFillColor(sf::Color::Red);
m_position.y = (windowHeight - 20.f) / 2.f - 40.f;
m_currentVelocity.setPosition({windowWidth / 2.f - 150.f, windowHeight * 3.f / 4.f - 50.f});
m_currentFactor.setPosition({windowWidth / 2.f - 150.f, windowHeight * 3.f / 4.f});
// Set attenuation to a nice value
setAttenuation(0.05f);
sf::SoundStream::initialize(1, sampleRate, {sf::SoundChannel::Mono});
}
void onUpdate(float time, float x, float y) override
{
m_velocity = std::clamp(150.f * (1.f - y), 0.f, 150.f);
m_factor = std::clamp(x, 0.f, 1.f);
m_currentVelocity.setString("Velocity: " + std::to_string(m_velocity));
m_currentFactor.setString("Doppler Factor: " + std::to_string(m_factor));
m_position.x = std::fmod(time, 8.f) * windowWidth / 8.f;
setPosition({m_position.x, m_position.y, 0.f});
setVelocity({m_velocity, 0.f, 0.f});
setDopplerFactor(m_factor);
}
void onDraw(sf::RenderTarget& target, sf::RenderStates states) const override
2024-03-25 07:06:21 +08:00
{
auto statesCopy(states);
statesCopy.transform = sf::Transform::Identity;
statesCopy.transform.translate(m_position - sf::Vector2f({20.f, 0.f}));
target.draw(m_listener, states);
target.draw(m_soundShape, statesCopy);
target.draw(m_currentVelocity, states);
target.draw(m_currentFactor, states);
}
void onStart() override
{
// Synchronize listener audio position with graphical position
sf::Listener::setPosition({m_listener.getPosition().x, m_listener.getPosition().y, 0.f});
play();
}
void onStop() override
{
SoundStream::stop();
}
private:
bool onGetData(sf::SoundStream::Chunk& chunk) override
{
const auto period = 1.f / m_frequency;
for (auto i = 0u; i < chunkSize; ++i)
{
2024-04-26 06:58:19 +08:00
const auto value = m_amplitude * 2 * (m_time / period - std::floor(0.5f + m_time / period));
2024-03-25 07:06:21 +08:00
m_sampleBuffer[i] = static_cast<std::int16_t>(std::lround(value * std::numeric_limits<std::int16_t>::max()));
m_time += timePerSample;
}
chunk.sampleCount = chunkSize;
chunk.samples = m_sampleBuffer.data();
return true;
}
void onSeek(sf::Time) override
{
// It doesn't make sense to seek in a tone generator
}
static constexpr unsigned int sampleRate{44100};
static constexpr std::size_t chunkSize{sampleRate / 100};
2024-05-17 10:56:30 +08:00
static constexpr float timePerSample{1.f / float{sampleRate}};
2024-03-25 07:06:21 +08:00
std::vector<std::int16_t> m_sampleBuffer = std::vector<std::int16_t>(chunkSize, 0);
float m_amplitude{0.05f};
float m_frequency{220};
float m_time{};
float m_velocity{0.f};
float m_factor{1.f};
sf::CircleShape m_listener{20.f};
sf::CircleShape m_soundShape{20.f};
sf::Vector2f m_position;
sf::Text m_currentVelocity;
sf::Text m_currentFactor;
};
////////////////////////////////////////////////////////////
// Processing base class
////////////////////////////////////////////////////////////
class Processing : public Effect
{
public:
void onUpdate([[maybe_unused]] float time, float x, float y) override
{
m_position = {windowWidth * x - 10.f, windowHeight * y - 10.f};
m_music->setPosition({m_position.x, m_position.y, 0.f});
}
void onDraw(sf::RenderTarget& target, sf::RenderStates states) const override
{
auto statesCopy(states);
statesCopy.transform = sf::Transform::Identity;
statesCopy.transform.translate(m_position);
target.draw(m_listener, states);
target.draw(m_soundShape, statesCopy);
target.draw(m_enabledText);
target.draw(m_instructions);
}
void onStart() override
{
// Synchronize listener audio position with graphical position
sf::Listener::setPosition({m_listener.getPosition().x, m_listener.getPosition().y, 0.f});
m_music->play();
}
void onStop() override
{
m_music->stop();
}
protected:
Processing(std::string name) :
Effect(std::move(name)),
m_enabledText(getFont(), "Processing: Enabled"),
m_instructions(getFont(), "Press Space to enable/disable processing")
{
m_listener.setPosition({(windowWidth - 20.f) / 2.f, (windowHeight - 20.f) / 2.f});
m_listener.setFillColor(sf::Color::Red);
m_enabledText.setPosition({windowWidth / 2.f - 120.f, windowHeight * 3.f / 4.f - 50.f});
m_instructions.setPosition({windowWidth / 2.f - 250.f, windowHeight * 3.f / 4.f});
// Load the music file
if (!(m_music = sf::Music::openFromFile(resourcesDir() / "doodle_pop.ogg")))
{
std::cerr << "Failed to load " << (resourcesDir() / "doodle_pop.ogg").string() << std::endl;
std::abort();
}
// Set the music to loop
m_music->setLoop(true);
// Set attenuation to a nice value
m_music->setAttenuation(0.0f);
}
sf::Music& getMusic()
{
return *m_music;
}
const std::shared_ptr<bool>& getEnabled() const
{
return m_enabled;
}
private:
void onKey(sf::Keyboard::Key key) override
{
if (key == sf::Keyboard::Key::Space)
*m_enabled = !*m_enabled;
m_enabledText.setString(*m_enabled ? "Processing: Enabled" : "Processing: Disabled");
}
sf::CircleShape m_listener{20.f};
sf::CircleShape m_soundShape{20.f};
sf::Vector2f m_position;
std::optional<sf::Music> m_music;
std::shared_ptr<bool> m_enabled{std::make_shared<bool>(true)};
sf::Text m_enabledText;
sf::Text m_instructions;
};
////////////////////////////////////////////////////////////
// Biquad Filter (https://github.com/dimtass/DSP-Cpp-filters)
////////////////////////////////////////////////////////////
class BiquadFilter : public Processing
{
protected:
struct Coefficients
{
float a0{};
float a1{};
float a2{};
float b1{};
float b2{};
float c0{};
float d0{};
};
using Processing::Processing;
void setCoefficients(const Coefficients& coefficients)
{
auto& music = getMusic();
struct State
{
float xnz1{};
float xnz2{};
float ynz1{};
float ynz2{};
};
// We use a mutable lambda to tie the lifetime of the state and coefficients to the lambda itself
// This is necessary since the Echo object will be destroyed before the Music object
// While the Music object exists, it is possible that the audio engine will try to call
// this lambda hence we need to always have usable coefficients and state until the Music and the
// associated lambda are destroyed
music.setEffectProcessor(
[coefficients,
enabled = getEnabled(),
state = std::vector<State>(music.getChannelCount())](const float* inputFrames,
unsigned int& inputFrameCount,
float* outputFrames,
unsigned int& outputFrameCount,
unsigned int frameChannelCount) mutable
{
for (auto frame = 0u; frame < outputFrameCount; ++frame)
{
for (auto channel = 0u; channel < frameChannelCount; ++channel)
{
auto& channelState = state[channel];
const auto xn = inputFrames ? inputFrames[channel] : 0.f; // Read silence if no input data available
const auto yn = coefficients.a0 * xn + coefficients.a1 * channelState.xnz1 +
coefficients.a2 * channelState.xnz2 - coefficients.b1 * channelState.ynz1 -
coefficients.b2 * channelState.ynz2;
channelState.xnz2 = channelState.xnz1;
channelState.xnz1 = xn;
channelState.ynz2 = channelState.ynz1;
channelState.ynz1 = yn;
outputFrames[channel] = *enabled ? yn : xn;
}
inputFrames += (inputFrames ? frameChannelCount : 0u);
outputFrames += frameChannelCount;
}
// We processed data 1:1
inputFrameCount = outputFrameCount;
});
}
};
////////////////////////////////////////////////////////////
// High-pass Filter (https://github.com/dimtass/DSP-Cpp-filters)
////////////////////////////////////////////////////////////
struct HighPassFilter : BiquadFilter
{
HighPassFilter() : BiquadFilter("High-pass Filter")
{
static constexpr auto cutoffFrequency = 2000.f;
const auto c = std::tan(pi * cutoffFrequency / static_cast<float>(getMusic().getSampleRate()));
Coefficients coefficients;
coefficients.a0 = 1.f / (1.f + sqrt2 * c + std::pow(c, 2.f));
coefficients.a1 = -2.f * coefficients.a0;
coefficients.a2 = coefficients.a0;
coefficients.b1 = 2.f * coefficients.a0 * (std::pow(c, 2.f) - 1.f);
coefficients.b2 = coefficients.a0 * (1.f - sqrt2 * c + std::pow(c, 2.f));
setCoefficients(coefficients);
}
};
////////////////////////////////////////////////////////////
// Low-pass Filter (https://github.com/dimtass/DSP-Cpp-filters)
////////////////////////////////////////////////////////////
struct LowPassFilter : BiquadFilter
{
LowPassFilter() : BiquadFilter("Low-pass Filter")
{
static constexpr auto cutoffFrequency = 500.f;
const auto c = 1.f / std::tan(pi * cutoffFrequency / static_cast<float>(getMusic().getSampleRate()));
Coefficients coefficients;
coefficients.a0 = 1.f / (1.f + sqrt2 * c + std::pow(c, 2.f));
coefficients.a1 = 2.f * coefficients.a0;
coefficients.a2 = coefficients.a0;
coefficients.b1 = 2.f * coefficients.a0 * (1.f - std::pow(c, 2.f));
coefficients.b2 = coefficients.a0 * (1.f - sqrt2 * c + std::pow(c, 2.f));
setCoefficients(coefficients);
}
};
////////////////////////////////////////////////////////////
// Echo (miniaudio implementation)
////////////////////////////////////////////////////////////
struct Echo : Processing
{
Echo() : Processing("Echo")
{
auto& music = getMusic();
static constexpr auto delay = 0.2f;
static constexpr auto decay = 0.75f;
static constexpr auto wet = 0.8f;
static constexpr auto dry = 1.f;
const auto channelCount = music.getChannelCount();
const auto sampleRate = music.getSampleRate();
const auto delayInFrames = static_cast<unsigned int>(static_cast<float>(sampleRate) * delay);
// We use a mutable lambda to tie the lifetime of the state to the lambda itself
// This is necessary since the Echo object will be destroyed before the Music object
// While the Music object exists, it is possible that the audio engine will try to call
// this lambda hence we need to always have a usable state until the Music and the
// associated lambda are destroyed
music.setEffectProcessor(
[delayInFrames,
enabled = getEnabled(),
buffer = std::vector<float>(delayInFrames * channelCount, 0.f),
cursor = 0u](const float* inputFrames,
unsigned int& inputFrameCount,
float* outputFrames,
unsigned int& outputFrameCount,
unsigned int frameChannelCount) mutable
{
for (auto frame = 0u; frame < outputFrameCount; ++frame)
{
for (auto channel = 0u; channel < frameChannelCount; ++channel)
{
const auto input = inputFrames ? inputFrames[channel] : 0.f; // Read silence if no input data available
const auto bufferIndex = (cursor * frameChannelCount) + channel;
buffer[bufferIndex] = (buffer[bufferIndex] * decay) + (input * dry);
outputFrames[channel] = *enabled ? buffer[bufferIndex] * wet : input;
}
cursor = (cursor + 1) % delayInFrames;
inputFrames += (inputFrames ? frameChannelCount : 0u);
outputFrames += frameChannelCount;
}
// We processed data 1:1
inputFrameCount = outputFrameCount;
});
}
};
////////////////////////////////////////////////////////////
// Reverb (https://github.com/sellicott/DSP-FFMpeg-Reverb)
////////////////////////////////////////////////////////////
class Reverb : public Processing
{
public:
Reverb() : Processing("Reverb")
{
auto& music = getMusic();
static constexpr auto sustain = 0.7f; // [0.f; 1.f]
const auto channelCount = music.getChannelCount();
const auto sampleRate = music.getSampleRate();
std::vector<ReverbFilter<float>> filters;
filters.reserve(channelCount);
for (auto i = 0u; i < channelCount; ++i)
filters.emplace_back(sampleRate, sustain);
// We use a mutable lambda to tie the lifetime of the state to the lambda itself
// This is necessary since the Echo object will be destroyed before the Music object
// While the Music object exists, it is possible that the audio engine will try to call
// this lambda hence we need to always have a usable state until the Music and the
// associated lambda are destroyed
music.setEffectProcessor(
[filters, enabled = getEnabled()](const float* inputFrames,
unsigned int& inputFrameCount,
float* outputFrames,
unsigned int& outputFrameCount,
unsigned int frameChannelCount) mutable
{
for (auto frame = 0u; frame < outputFrameCount; ++frame)
{
for (auto channel = 0u; channel < frameChannelCount; ++channel)
{
const auto input = inputFrames ? inputFrames[channel] : 0.f; // Read silence if no input data available
outputFrames[channel] = *enabled ? filters[channel](input) : input;
}
inputFrames += (inputFrames ? frameChannelCount : 0u);
outputFrames += frameChannelCount;
}
// We processed data 1:1
inputFrameCount = outputFrameCount;
});
}
private:
template <typename T>
class AllPassFilter
{
public:
AllPassFilter(std::size_t delay, float theGain) : m_buffer(delay, {}), m_gain(theGain)
{
}
T operator()(T input)
{
const auto output = m_buffer[m_cursor];
input = static_cast<T>(input + m_gain * output);
m_buffer[m_cursor] = input;
m_cursor = (m_cursor + 1) % m_buffer.size();
return static_cast<T>(-m_gain * input + output);
}
private:
std::vector<T> m_buffer;
std::size_t m_cursor{};
const float m_gain{};
};
template <typename T>
class FIRFilter
{
public:
FIRFilter(std::vector<float> taps) : m_taps(std::move(taps))
{
}
T operator()(T input)
{
m_buffer[m_cursor] = input;
m_cursor = (m_cursor + 1) % m_buffer.size();
T output{};
for (auto i = 0u; i < m_taps.size(); ++i)
output += static_cast<T>(m_taps[i] * m_buffer[(m_cursor + i) % m_buffer.size()]);
return output;
}
private:
const std::vector<float> m_taps;
std::vector<T> m_buffer = std::vector<T>(m_taps.size(), {});
std::size_t m_cursor{};
};
template <typename T>
class ReverbFilter
{
public:
ReverbFilter(unsigned int sampleRate, float feedbackGain) :
m_allPass{{sampleRate / 10, 0.6f}, {sampleRate / 30, -0.6f}, {sampleRate / 90, 0.6f}, {sampleRate / 270, -0.6f}},
m_fir({0.003369f, 0.002810f, 0.001758f, 0.000340f, -0.001255f, -0.002793f, -0.004014f, -0.004659f,
-0.004516f, -0.003464f, -0.001514f, 0.001148f, 0.004157f, 0.006986f, 0.009003f, 0.009571f,
0.008173f, 0.004560f, -0.001120f, -0.008222f, -0.015581f, -0.021579f, -0.024323f, -0.021933f,
-0.012904f, 0.003500f, 0.026890f, 0.055537f, 0.086377f, 0.115331f, 0.137960f, 0.150407f,
0.150407f, 0.137960f, 0.115331f, 0.086377f, 0.055537f, 0.026890f, 0.003500f, -0.012904f,
-0.021933f, -0.024323f, -0.021579f, -0.015581f, -0.008222f, -0.001120f, 0.004560f, 0.008173f,
0.009571f, 0.009003f, 0.006986f, 0.004157f, 0.001148f, -0.001514f, -0.003464f, -0.004516f,
-0.004659f, -0.004014f, -0.002793f, -0.001255f, 0.000340f, 0.001758f, 0.002810f, 0.003369f}),
m_buffer(sampleRate / 5, {}), // sample rate / 5 = 200ms buffer size
m_feedbackGain(feedbackGain)
{
}
T operator()(T input)
{
auto output = static_cast<T>(0.7f * input + m_feedbackGain * m_buffer[m_cursor]);
for (auto& f : m_allPass)
output = f(output);
output = m_fir(output);
m_buffer[m_cursor] = output;
m_cursor = (m_cursor + 1) % m_buffer.size();
output += 0.5f * m_buffer[(m_cursor + 1 * m_interval - 1) % m_buffer.size()];
output += 0.25f * m_buffer[(m_cursor + 2 * m_interval - 1) % m_buffer.size()];
output += 0.125f * m_buffer[(m_cursor + 3 * m_interval - 1) % m_buffer.size()];
return 0.6f * output + input;
}
private:
AllPassFilter<T> m_allPass[4];
FIRFilter<T> m_fir;
std::vector<T> m_buffer;
std::size_t m_cursor{};
const std::size_t m_interval{m_buffer.size() / 3};
const float m_feedbackGain{};
};
};
2024-03-25 07:06:21 +08:00
////////////////////////////////////////////////////////////
/// Entry point of application
///
/// \return Application exit code
///
////////////////////////////////////////////////////////////
int main()
{
// Create the main window
sf::RenderWindow window(sf::VideoMode({windowWidth, windowHeight}),
"SFML Sound Effects",
sf::Style::Titlebar | sf::Style::Close);
window.setVerticalSyncEnabled(true);
// Open the application font and pass it to the Effect class
const auto font = sf::Font::openFromFile(resourcesDir() / "tuffy.ttf").value();
2024-03-25 07:06:21 +08:00
Effect::setFont(font);
// Create the effects
Surround surroundEffect;
PitchVolume pitchVolumeEffect;
Attenuation attenuationEffect;
Tone toneEffect;
Doppler dopplerEffect;
HighPassFilter highPassFilterEffect;
LowPassFilter lowPassFilterEffect;
Echo echoEffect;
Reverb reverbEffect;
const std::array<Effect*, 9> effects{&surroundEffect,
&pitchVolumeEffect,
&attenuationEffect,
&toneEffect,
&dopplerEffect,
&highPassFilterEffect,
&lowPassFilterEffect,
&echoEffect,
&reverbEffect};
2024-03-25 07:06:21 +08:00
std::size_t current = 0;
effects[current]->start();
// Create the messages background
const auto textBackgroundTexture = sf::Texture::loadFromFile(resourcesDir() / "text-background.png").value();
2024-03-25 07:06:21 +08:00
sf::Sprite textBackground(textBackgroundTexture);
textBackground.setPosition({0.f, 520.f});
textBackground.setColor(sf::Color(255, 255, 255, 200));
// Create the description text
sf::Text description(font, "Current effect: " + effects[current]->getName(), 20);
description.setPosition({10.f, 522.f});
2024-03-25 07:06:21 +08:00
description.setFillColor(sf::Color(80, 80, 80));
// Create the instructions text
sf::Text instructions(font, "Press left and right arrows to change the current effect", 20);
instructions.setPosition({280.f, 544.f});
2024-03-25 07:06:21 +08:00
instructions.setFillColor(sf::Color(80, 80, 80));
// Create the playback device text
auto playbackDeviceName = sf::PlaybackDevice::getDevice();
sf::Text playbackDevice(font, "Current playback device: " + playbackDeviceName.value_or("None"), 20);
playbackDevice.setPosition({10.f, 566.f});
playbackDevice.setFillColor(sf::Color(80, 80, 80));
// Create the playback device instructions text
sf::Text playbackDeviceInstructions(font, "Press F1 to change device", 20);
playbackDeviceInstructions.setPosition({565.f, 566.f});
playbackDeviceInstructions.setFillColor(sf::Color(80, 80, 80));
2024-03-25 07:06:21 +08:00
// Start the game loop
const sf::Clock clock;
while (window.isOpen())
{
// Process events
while (const std::optional event = window.pollEvent())
2024-03-25 07:06:21 +08:00
{
// Close window: exit
if (event->is<sf::Event::Closed>())
2024-03-25 07:06:21 +08:00
window.close();
if (const auto* keyPressed = event->getIf<sf::Event::KeyPressed>())
2024-03-25 07:06:21 +08:00
{
switch (keyPressed->code)
2024-03-25 07:06:21 +08:00
{
// Escape key: exit
case sf::Keyboard::Key::Escape:
window.close();
break;
// Left arrow key: previous effect
case sf::Keyboard::Key::Left:
effects[current]->stop();
if (current == 0)
current = effects.size() - 1;
else
--current;
effects[current]->start();
description.setString("Current effect: " + effects[current]->getName());
break;
// Right arrow key: next effect
case sf::Keyboard::Key::Right:
effects[current]->stop();
if (current == effects.size() - 1)
current = 0;
else
++current;
effects[current]->start();
description.setString("Current effect: " + effects[current]->getName());
break;
// F1 key: change playback device
case sf::Keyboard::Key::F1:
{
// We need to query the list every time we want to change
// since new devices could have been added in the mean time
const auto devices = sf::PlaybackDevice::getAvailableDevices();
const auto currentDevice = sf::PlaybackDevice::getDevice();
auto next = currentDevice;
for (auto iter = devices.begin(); iter != devices.end(); ++iter)
{
if (*iter == currentDevice)
{
const auto nextIter = std::next(iter);
next = (nextIter == devices.end()) ? devices.front() : *nextIter;
break;
}
}
if (next)
{
if (!sf::PlaybackDevice::setDevice(*next))
std::cerr << "Failed to set the playback device to: " << *next << std::endl;
playbackDeviceName = sf::PlaybackDevice::getDevice();
playbackDevice.setString("Current playback device: " + playbackDeviceName.value_or("None"));
}
break;
}
2024-03-25 07:06:21 +08:00
default:
effects[current]->handleKey(keyPressed->code);
2024-03-25 07:06:21 +08:00
break;
}
}
}
// Update the current example
const auto [x, y] = sf::Vector2f(sf::Mouse::getPosition(window)).cwiseDiv(sf::Vector2f(window.getSize()));
effects[current]->update(clock.getElapsedTime().asSeconds(), x, y);
// Clear the window
window.clear(sf::Color(50, 50, 50));
// Draw the current example
window.draw(*effects[current]);
// Draw the text
window.draw(textBackground);
window.draw(instructions);
window.draw(description);
window.draw(playbackDevice);
window.draw(playbackDeviceInstructions);
2024-03-25 07:06:21 +08:00
// Finally, display the rendered frame on screen
window.display();
}
// Stop effect so that tone generators don't have to keep generating data while being destroyed
effects[current]->stop();
}