mirror of
https://github.com/SFML/SFML.git
synced 2025-03-14 01:40:05 +08:00
1024 lines
44 KiB
C++
1024 lines
44 KiB
C++
////////////////////////////////////////////////////////////
|
|
//
|
|
// SFML - Simple and Fast Multimedia Library
|
|
// Copyright (C) 2007-2024 Laurent Gomila (laurent@sfml-dev.org)
|
|
//
|
|
// This software is provided 'as-is', without any express or implied warranty.
|
|
// In no event will the authors be held liable for any damages arising from the use of this software.
|
|
//
|
|
// Permission is granted to anyone to use this software for any purpose,
|
|
// including commercial applications, and to alter it and redistribute it freely,
|
|
// subject to the following restrictions:
|
|
//
|
|
// 1. The origin of this software must not be misrepresented;
|
|
// you must not claim that you wrote the original software.
|
|
// If you use this software in a product, an acknowledgment
|
|
// in the product documentation would be appreciated but is not required.
|
|
//
|
|
// 2. Altered source versions must be plainly marked as such,
|
|
// and must not be misrepresented as being the original software.
|
|
//
|
|
// 3. This notice may not be removed or altered from any source distribution.
|
|
//
|
|
////////////////////////////////////////////////////////////
|
|
|
|
#pragma once
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// Headers
|
|
////////////////////////////////////////////////////////////
|
|
#include <SFML/Graphics/Export.hpp>
|
|
|
|
#include <SFML/Graphics/Glsl.hpp>
|
|
|
|
#include <SFML/Window/GlResource.hpp>
|
|
|
|
#include <filesystem>
|
|
#include <string>
|
|
#include <string_view>
|
|
#include <unordered_map>
|
|
|
|
#include <cstddef>
|
|
|
|
|
|
namespace sf
|
|
{
|
|
class InputStream;
|
|
class Texture;
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Shader class (vertex, geometry and fragment)
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
class SFML_GRAPHICS_API Shader : GlResource
|
|
{
|
|
public:
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Types of shaders
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
enum class Type
|
|
{
|
|
Vertex, //!< %Vertex shader
|
|
Geometry, //!< Geometry shader
|
|
Fragment //!< Fragment (pixel) shader
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Special type that can be passed to setUniform(),
|
|
/// and that represents the texture of the object being drawn
|
|
///
|
|
/// \see `setUniform(const std::string&, CurrentTextureType)`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
struct CurrentTextureType
|
|
{
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Represents the texture of the object being drawn
|
|
///
|
|
/// \see `setUniform(const std::string&, CurrentTextureType)`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
// NOLINTNEXTLINE(readability-identifier-naming)
|
|
static inline CurrentTextureType CurrentTexture;
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Default constructor
|
|
///
|
|
/// This constructor creates an empty shader.
|
|
///
|
|
/// Binding an empty shader has the same effect as not
|
|
/// binding any shader.
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
Shader() = default;
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Destructor
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
~Shader();
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Deleted copy constructor
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
Shader(const Shader&) = delete;
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Deleted copy assignment
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
Shader& operator=(const Shader&) = delete;
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Move constructor
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
Shader(Shader&& source) noexcept;
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Move assignment
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
Shader& operator=(Shader&& right) noexcept;
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Construct from a shader file
|
|
///
|
|
/// This constructor loads a single shader, vertex, geometry or
|
|
/// fragment, identified by the second argument.
|
|
/// The source must be a text file containing a valid
|
|
/// shader in GLSL language. GLSL is a C-like language
|
|
/// dedicated to OpenGL shaders; you'll probably need to
|
|
/// read a good documentation for it before writing your
|
|
/// own shaders.
|
|
///
|
|
/// \param filename Path of the vertex, geometry or fragment shader file to load
|
|
/// \param type Type of shader (vertex, geometry or fragment)
|
|
///
|
|
/// \throws sf::Exception if loading was unsuccessful
|
|
///
|
|
/// \see `loadFromFile`, `loadFromMemory`, `loadFromStream`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
Shader(const std::filesystem::path& filename, Type type);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Construct from vertex and fragment shader files
|
|
///
|
|
/// This constructor loads both the vertex and the fragment
|
|
/// shaders. If one of them fails to load, the shader is left
|
|
/// empty (the valid shader is unloaded).
|
|
/// The sources must be text files containing valid shaders
|
|
/// in GLSL language. GLSL is a C-like language dedicated to
|
|
/// OpenGL shaders; you'll probably need to read a good documentation
|
|
/// for it before writing your own shaders.
|
|
///
|
|
/// \param vertexShaderFilename Path of the vertex shader file to load
|
|
/// \param fragmentShaderFilename Path of the fragment shader file to load
|
|
///
|
|
/// \throws sf::Exception if loading was unsuccessful
|
|
///
|
|
/// \see `loadFromFile`, `loadFromMemory`, `loadFromStream`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
Shader(const std::filesystem::path& vertexShaderFilename, const std::filesystem::path& fragmentShaderFilename);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Construct from vertex, geometry and fragment shader files
|
|
///
|
|
/// This constructor loads the vertex, geometry and fragment
|
|
/// shaders. If one of them fails to load, the shader is left
|
|
/// empty (the valid shader is unloaded).
|
|
/// The sources must be text files containing valid shaders
|
|
/// in GLSL language. GLSL is a C-like language dedicated to
|
|
/// OpenGL shaders; you'll probably need to read a good documentation
|
|
/// for it before writing your own shaders.
|
|
///
|
|
/// \param vertexShaderFilename Path of the vertex shader file to load
|
|
/// \param geometryShaderFilename Path of the geometry shader file to load
|
|
/// \param fragmentShaderFilename Path of the fragment shader file to load
|
|
///
|
|
/// \throws sf::Exception if loading was unsuccessful
|
|
///
|
|
/// \see `loadFromFile`, `loadFromMemory`, `loadFromStream`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
Shader(const std::filesystem::path& vertexShaderFilename,
|
|
const std::filesystem::path& geometryShaderFilename,
|
|
const std::filesystem::path& fragmentShaderFilename);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Construct from shader in memory
|
|
///
|
|
/// This constructor loads a single shader, vertex, geometry
|
|
/// or fragment, identified by the second argument.
|
|
/// The source code must be a valid shader in GLSL language.
|
|
/// GLSL is a C-like language dedicated to OpenGL shaders;
|
|
/// you'll probably need to read a good documentation for
|
|
/// it before writing your own shaders.
|
|
///
|
|
/// \param shader String containing the source code of the shader
|
|
/// \param type Type of shader (vertex, geometry or fragment)
|
|
///
|
|
/// \throws sf::Exception if loading was unsuccessful
|
|
///
|
|
/// \see `loadFromFile`, `loadFromMemory`, `loadFromStream`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
Shader(std::string_view shader, Type type);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Construct from vertex and fragment shaders in memory
|
|
///
|
|
/// This constructor loads both the vertex and the fragment
|
|
/// shaders. If one of them fails to load, the shader is left
|
|
/// empty (the valid shader is unloaded).
|
|
/// The sources must be valid shaders in GLSL language. GLSL is
|
|
/// a C-like language dedicated to OpenGL shaders; you'll
|
|
/// probably need to read a good documentation for it before
|
|
/// writing your own shaders.
|
|
///
|
|
/// \param vertexShader String containing the source code of the vertex shader
|
|
/// \param fragmentShader String containing the source code of the fragment shader
|
|
///
|
|
/// \throws sf::Exception if loading was unsuccessful
|
|
///
|
|
/// \see `loadFromFile`, `loadFromMemory`, `loadFromStream`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
Shader(std::string_view vertexShader, std::string_view fragmentShader);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Construct from vertex, geometry and fragment shaders in memory
|
|
///
|
|
/// This constructor loads the vertex, geometry and fragment
|
|
/// shaders. If one of them fails to load, the shader is left
|
|
/// empty (the valid shader is unloaded).
|
|
/// The sources must be valid shaders in GLSL language. GLSL is
|
|
/// a C-like language dedicated to OpenGL shaders; you'll
|
|
/// probably need to read a good documentation for it before
|
|
/// writing your own shaders.
|
|
///
|
|
/// \param vertexShader String containing the source code of the vertex shader
|
|
/// \param geometryShader String containing the source code of the geometry shader
|
|
/// \param fragmentShader String containing the source code of the fragment shader
|
|
///
|
|
/// \throws sf::Exception if loading was unsuccessful
|
|
///
|
|
/// \see `loadFromFile`, `loadFromMemory`, `loadFromStream`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
Shader(std::string_view vertexShader, std::string_view geometryShader, std::string_view fragmentShader);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Construct from a shader stream
|
|
///
|
|
/// This constructor loads a single shader, vertex, geometry
|
|
/// or fragment, identified by the second argument.
|
|
/// The source code must be a valid shader in GLSL language.
|
|
/// GLSL is a C-like language dedicated to OpenGL shaders;
|
|
/// you'll probably need to read a good documentation for it
|
|
/// before writing your own shaders.
|
|
///
|
|
/// \param stream Source stream to read from
|
|
/// \param type Type of shader (vertex, geometry or fragment)
|
|
///
|
|
/// \throws sf::Exception if loading was unsuccessful
|
|
///
|
|
/// \see `loadFromFile`, `loadFromMemory`, `loadFromStream`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
Shader(InputStream& stream, Type type);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Construct from vertex and fragment shader streams
|
|
///
|
|
/// This constructor loads both the vertex and the fragment
|
|
/// shaders. If one of them fails to load, the shader is left
|
|
/// empty (the valid shader is unloaded).
|
|
/// The source codes must be valid shaders in GLSL language.
|
|
/// GLSL is a C-like language dedicated to OpenGL shaders;
|
|
/// you'll probably need to read a good documentation for
|
|
/// it before writing your own shaders.
|
|
///
|
|
/// \param vertexShaderStream Source stream to read the vertex shader from
|
|
/// \param fragmentShaderStream Source stream to read the fragment shader from
|
|
///
|
|
/// \throws sf::Exception if loading was unsuccessful
|
|
///
|
|
/// \see `loadFromFile`, `loadFromMemory`, `loadFromStream`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
Shader(InputStream& vertexShaderStream, InputStream& fragmentShaderStream);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Construct from vertex, geometry and fragment shader streams
|
|
///
|
|
/// This constructor loads the vertex, geometry and fragment
|
|
/// shaders. If one of them fails to load, the shader is left
|
|
/// empty (the valid shader is unloaded).
|
|
/// The source codes must be valid shaders in GLSL language.
|
|
/// GLSL is a C-like language dedicated to OpenGL shaders;
|
|
/// you'll probably need to read a good documentation for
|
|
/// it before writing your own shaders.
|
|
///
|
|
/// \param vertexShaderStream Source stream to read the vertex shader from
|
|
/// \param geometryShaderStream Source stream to read the geometry shader from
|
|
/// \param fragmentShaderStream Source stream to read the fragment shader from
|
|
///
|
|
/// \throws sf::Exception if loading was unsuccessful
|
|
///
|
|
/// \see `loadFromFile`, `loadFromMemory`, `loadFromStream`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
Shader(InputStream& vertexShaderStream, InputStream& geometryShaderStream, InputStream& fragmentShaderStream);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Load the vertex, geometry or fragment shader from a file
|
|
///
|
|
/// This function loads a single shader, vertex, geometry or
|
|
/// fragment, identified by the second argument.
|
|
/// The source must be a text file containing a valid
|
|
/// shader in GLSL language. GLSL is a C-like language
|
|
/// dedicated to OpenGL shaders; you'll probably need to
|
|
/// read a good documentation for it before writing your
|
|
/// own shaders.
|
|
///
|
|
/// \param filename Path of the vertex, geometry or fragment shader file to load
|
|
/// \param type Type of shader (vertex, geometry or fragment)
|
|
///
|
|
/// \return `true` if loading succeeded, `false` if it failed
|
|
///
|
|
/// \see `loadFromMemory`, `loadFromStream`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
[[nodiscard]] bool loadFromFile(const std::filesystem::path& filename, Type type);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Load both the vertex and fragment shaders from files
|
|
///
|
|
/// This function loads both the vertex and the fragment
|
|
/// shaders. If one of them fails to load, the shader is left
|
|
/// empty (the valid shader is unloaded).
|
|
/// The sources must be text files containing valid shaders
|
|
/// in GLSL language. GLSL is a C-like language dedicated to
|
|
/// OpenGL shaders; you'll probably need to read a good documentation
|
|
/// for it before writing your own shaders.
|
|
///
|
|
/// \param vertexShaderFilename Path of the vertex shader file to load
|
|
/// \param fragmentShaderFilename Path of the fragment shader file to load
|
|
///
|
|
/// \return `true` if loading succeeded, `false` if it failed
|
|
///
|
|
/// \see `loadFromMemory`, `loadFromStream`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
[[nodiscard]] bool loadFromFile(const std::filesystem::path& vertexShaderFilename,
|
|
const std::filesystem::path& fragmentShaderFilename);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Load the vertex, geometry and fragment shaders from files
|
|
///
|
|
/// This function loads the vertex, geometry and fragment
|
|
/// shaders. If one of them fails to load, the shader is left
|
|
/// empty (the valid shader is unloaded).
|
|
/// The sources must be text files containing valid shaders
|
|
/// in GLSL language. GLSL is a C-like language dedicated to
|
|
/// OpenGL shaders; you'll probably need to read a good documentation
|
|
/// for it before writing your own shaders.
|
|
///
|
|
/// \param vertexShaderFilename Path of the vertex shader file to load
|
|
/// \param geometryShaderFilename Path of the geometry shader file to load
|
|
/// \param fragmentShaderFilename Path of the fragment shader file to load
|
|
///
|
|
/// \return `true` if loading succeeded, `false` if it failed
|
|
///
|
|
/// \see `loadFromMemory`, `loadFromStream`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
[[nodiscard]] bool loadFromFile(const std::filesystem::path& vertexShaderFilename,
|
|
const std::filesystem::path& geometryShaderFilename,
|
|
const std::filesystem::path& fragmentShaderFilename);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Load the vertex, geometry or fragment shader from a source code in memory
|
|
///
|
|
/// This function loads a single shader, vertex, geometry
|
|
/// or fragment, identified by the second argument.
|
|
/// The source code must be a valid shader in GLSL language.
|
|
/// GLSL is a C-like language dedicated to OpenGL shaders;
|
|
/// you'll probably need to read a good documentation for
|
|
/// it before writing your own shaders.
|
|
///
|
|
/// \param shader String containing the source code of the shader
|
|
/// \param type Type of shader (vertex, geometry or fragment)
|
|
///
|
|
/// \return `true` if loading succeeded, `false` if it failed
|
|
///
|
|
/// \see `loadFromFile`, `loadFromStream`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
[[nodiscard]] bool loadFromMemory(std::string_view shader, Type type);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Load both the vertex and fragment shaders from source codes in memory
|
|
///
|
|
/// This function loads both the vertex and the fragment
|
|
/// shaders. If one of them fails to load, the shader is left
|
|
/// empty (the valid shader is unloaded).
|
|
/// The sources must be valid shaders in GLSL language. GLSL is
|
|
/// a C-like language dedicated to OpenGL shaders; you'll
|
|
/// probably need to read a good documentation for it before
|
|
/// writing your own shaders.
|
|
///
|
|
/// \param vertexShader String containing the source code of the vertex shader
|
|
/// \param fragmentShader String containing the source code of the fragment shader
|
|
///
|
|
/// \return `true` if loading succeeded, `false` if it failed
|
|
///
|
|
/// \see `loadFromFile`, `loadFromStream`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
[[nodiscard]] bool loadFromMemory(std::string_view vertexShader, std::string_view fragmentShader);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Load the vertex, geometry and fragment shaders from source codes in memory
|
|
///
|
|
/// This function loads the vertex, geometry and fragment
|
|
/// shaders. If one of them fails to load, the shader is left
|
|
/// empty (the valid shader is unloaded).
|
|
/// The sources must be valid shaders in GLSL language. GLSL is
|
|
/// a C-like language dedicated to OpenGL shaders; you'll
|
|
/// probably need to read a good documentation for it before
|
|
/// writing your own shaders.
|
|
///
|
|
/// \param vertexShader String containing the source code of the vertex shader
|
|
/// \param geometryShader String containing the source code of the geometry shader
|
|
/// \param fragmentShader String containing the source code of the fragment shader
|
|
///
|
|
/// \return `true` if loading succeeded, `false` if it failed
|
|
///
|
|
/// \see `loadFromFile`, `loadFromStream`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
[[nodiscard]] bool loadFromMemory(std::string_view vertexShader,
|
|
std::string_view geometryShader,
|
|
std::string_view fragmentShader);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Load the vertex, geometry or fragment shader from a custom stream
|
|
///
|
|
/// This function loads a single shader, vertex, geometry
|
|
/// or fragment, identified by the second argument.
|
|
/// The source code must be a valid shader in GLSL language.
|
|
/// GLSL is a C-like language dedicated to OpenGL shaders;
|
|
/// you'll probably need to read a good documentation for it
|
|
/// before writing your own shaders.
|
|
///
|
|
/// \param stream Source stream to read from
|
|
/// \param type Type of shader (vertex, geometry or fragment)
|
|
///
|
|
/// \return `true` if loading succeeded, `false` if it failed
|
|
///
|
|
/// \see `loadFromFile`, `loadFromMemory`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
[[nodiscard]] bool loadFromStream(InputStream& stream, Type type);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Load both the vertex and fragment shaders from custom streams
|
|
///
|
|
/// This function loads both the vertex and the fragment
|
|
/// shaders. If one of them fails to load, the shader is left
|
|
/// empty (the valid shader is unloaded).
|
|
/// The source codes must be valid shaders in GLSL language.
|
|
/// GLSL is a C-like language dedicated to OpenGL shaders;
|
|
/// you'll probably need to read a good documentation for
|
|
/// it before writing your own shaders.
|
|
///
|
|
/// \param vertexShaderStream Source stream to read the vertex shader from
|
|
/// \param fragmentShaderStream Source stream to read the fragment shader from
|
|
///
|
|
/// \return `true` if loading succeeded, `false` if it failed
|
|
///
|
|
/// \see `loadFromFile`, `loadFromMemory`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
[[nodiscard]] bool loadFromStream(InputStream& vertexShaderStream, InputStream& fragmentShaderStream);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Load the vertex, geometry and fragment shaders from custom streams
|
|
///
|
|
/// This function loads the vertex, geometry and fragment
|
|
/// shaders. If one of them fails to load, the shader is left
|
|
/// empty (the valid shader is unloaded).
|
|
/// The source codes must be valid shaders in GLSL language.
|
|
/// GLSL is a C-like language dedicated to OpenGL shaders;
|
|
/// you'll probably need to read a good documentation for
|
|
/// it before writing your own shaders.
|
|
///
|
|
/// \param vertexShaderStream Source stream to read the vertex shader from
|
|
/// \param geometryShaderStream Source stream to read the geometry shader from
|
|
/// \param fragmentShaderStream Source stream to read the fragment shader from
|
|
///
|
|
/// \return `true` if loading succeeded, `false` if it failed
|
|
///
|
|
/// \see `loadFromFile`, `loadFromMemory`
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
[[nodiscard]] bool loadFromStream(InputStream& vertexShaderStream,
|
|
InputStream& geometryShaderStream,
|
|
InputStream& fragmentShaderStream);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify value for \p float uniform
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param x Value of the float scalar
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniform(const std::string& name, float x);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify value for \p vec2 uniform
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param vector Value of the vec2 vector
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniform(const std::string& name, Glsl::Vec2 vector);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify value for \p vec3 uniform
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param vector Value of the vec3 vector
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniform(const std::string& name, const Glsl::Vec3& vector);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify value for \p vec4 uniform
|
|
///
|
|
/// This overload can also be called with `sf::Color` objects
|
|
/// that are converted to `sf::Glsl::Vec4`.
|
|
///
|
|
/// It is important to note that the components of the color are
|
|
/// normalized before being passed to the shader. Therefore,
|
|
/// they are converted from range [0 .. 255] to range [0 .. 1].
|
|
/// For example, a `sf::Color(255, 127, 0, 255)` will be transformed
|
|
/// to a `vec4(1.0, 0.5, 0.0, 1.0)` in the shader.
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param vector Value of the vec4 vector
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniform(const std::string& name, const Glsl::Vec4& vector);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify value for \p int uniform
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param x Value of the int scalar
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniform(const std::string& name, int x);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify value for \p ivec2 uniform
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param vector Value of the ivec2 vector
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniform(const std::string& name, Glsl::Ivec2 vector);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify value for \p ivec3 uniform
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param vector Value of the ivec3 vector
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniform(const std::string& name, const Glsl::Ivec3& vector);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify value for \p ivec4 uniform
|
|
///
|
|
/// This overload can also be called with `sf::Color` objects
|
|
/// that are converted to `sf::Glsl::Ivec4`.
|
|
///
|
|
/// If color conversions are used, the ivec4 uniform in GLSL
|
|
/// will hold the same values as the original `sf::Color`
|
|
/// instance. For example, `sf::Color(255, 127, 0, 255)` is
|
|
/// mapped to `ivec4(255, 127, 0, 255)`.
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param vector Value of the ivec4 vector
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniform(const std::string& name, const Glsl::Ivec4& vector);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify value for \p bool uniform
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param x Value of the bool scalar
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniform(const std::string& name, bool x);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify value for \p bvec2 uniform
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param vector Value of the bvec2 vector
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniform(const std::string& name, Glsl::Bvec2 vector);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify value for \p bvec3 uniform
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param vector Value of the bvec3 vector
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniform(const std::string& name, const Glsl::Bvec3& vector);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify value for \p bvec4 uniform
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param vector Value of the bvec4 vector
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniform(const std::string& name, const Glsl::Bvec4& vector);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify value for \p mat3 matrix
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param matrix Value of the mat3 matrix
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniform(const std::string& name, const Glsl::Mat3& matrix);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify value for \p mat4 matrix
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param matrix Value of the mat4 matrix
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniform(const std::string& name, const Glsl::Mat4& matrix);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify a texture as \p sampler2D uniform
|
|
///
|
|
/// \a name is the name of the variable to change in the shader.
|
|
/// The corresponding parameter in the shader must be a 2D texture
|
|
/// (\p sampler2D GLSL type).
|
|
///
|
|
/// Example:
|
|
/// \code
|
|
/// uniform sampler2D the_texture; // this is the variable in the shader
|
|
/// \endcode
|
|
/// \code
|
|
/// sf::Texture texture;
|
|
/// ...
|
|
/// shader.setUniform("the_texture", texture);
|
|
/// \endcode
|
|
/// It is important to note that `texture` must remain alive as long
|
|
/// as the shader uses it, no copy is made internally.
|
|
///
|
|
/// To use the texture of the object being drawn, which cannot be
|
|
/// known in advance, you can pass the special value
|
|
/// `sf::Shader::CurrentTexture`:
|
|
/// \code
|
|
/// shader.setUniform("the_texture", sf::Shader::CurrentTexture).
|
|
/// \endcode
|
|
///
|
|
/// \param name Name of the texture in the shader
|
|
/// \param texture Texture to assign
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniform(const std::string& name, const Texture& texture);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Disallow setting from a temporary texture
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniform(const std::string& name, const Texture&& texture) = delete;
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify current texture as \p sampler2D uniform
|
|
///
|
|
/// This overload maps a shader texture variable to the
|
|
/// texture of the object being drawn, which cannot be
|
|
/// known in advance. The second argument must be
|
|
/// `sf::Shader::CurrentTexture`.
|
|
/// The corresponding parameter in the shader must be a 2D texture
|
|
/// (\p sampler2D GLSL type).
|
|
///
|
|
/// Example:
|
|
/// \code
|
|
/// uniform sampler2D current; // this is the variable in the shader
|
|
/// \endcode
|
|
/// \code
|
|
/// shader.setUniform("current", sf::Shader::CurrentTexture);
|
|
/// \endcode
|
|
///
|
|
/// \param name Name of the texture in the shader
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniform(const std::string& name, CurrentTextureType);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify values for \p float[] array uniform
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param scalarArray pointer to array of \p float values
|
|
/// \param length Number of elements in the array
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniformArray(const std::string& name, const float* scalarArray, std::size_t length);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify values for \p vec2[] array uniform
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param vectorArray pointer to array of \p vec2 values
|
|
/// \param length Number of elements in the array
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniformArray(const std::string& name, const Glsl::Vec2* vectorArray, std::size_t length);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify values for \p vec3[] array uniform
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param vectorArray pointer to array of \p vec3 values
|
|
/// \param length Number of elements in the array
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniformArray(const std::string& name, const Glsl::Vec3* vectorArray, std::size_t length);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify values for \p vec4[] array uniform
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param vectorArray pointer to array of \p vec4 values
|
|
/// \param length Number of elements in the array
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniformArray(const std::string& name, const Glsl::Vec4* vectorArray, std::size_t length);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify values for \p mat3[] array uniform
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param matrixArray pointer to array of \p mat3 values
|
|
/// \param length Number of elements in the array
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniformArray(const std::string& name, const Glsl::Mat3* matrixArray, std::size_t length);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Specify values for \p mat4[] array uniform
|
|
///
|
|
/// \param name Name of the uniform variable in GLSL
|
|
/// \param matrixArray pointer to array of \p mat4 values
|
|
/// \param length Number of elements in the array
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void setUniformArray(const std::string& name, const Glsl::Mat4* matrixArray, std::size_t length);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Get the underlying OpenGL handle of the shader.
|
|
///
|
|
/// You shouldn't need to use this function, unless you have
|
|
/// very specific stuff to implement that SFML doesn't support,
|
|
/// or implement a temporary workaround until a bug is fixed.
|
|
///
|
|
/// \return OpenGL handle of the shader or 0 if not yet loaded
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
[[nodiscard]] unsigned int getNativeHandle() const;
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Bind a shader for rendering
|
|
///
|
|
/// This function is not part of the graphics API, it mustn't be
|
|
/// used when drawing SFML entities. It must be used only if you
|
|
/// mix `sf::Shader` with OpenGL code.
|
|
///
|
|
/// \code
|
|
/// sf::Shader s1, s2;
|
|
/// ...
|
|
/// sf::Shader::bind(&s1);
|
|
/// // draw OpenGL stuff that use s1...
|
|
/// sf::Shader::bind(&s2);
|
|
/// // draw OpenGL stuff that use s2...
|
|
/// sf::Shader::bind(nullptr);
|
|
/// // draw OpenGL stuff that use no shader...
|
|
/// \endcode
|
|
///
|
|
/// \param shader Shader to bind, can be null to use no shader
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
static void bind(const Shader* shader);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Tell whether or not the system supports shaders
|
|
///
|
|
/// This function should always be called before using
|
|
/// the shader features. If it returns `false`, then
|
|
/// any attempt to use `sf::Shader` will fail.
|
|
///
|
|
/// \return `true` if shaders are supported, `false` otherwise
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
[[nodiscard]] static bool isAvailable();
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Tell whether or not the system supports geometry shaders
|
|
///
|
|
/// This function should always be called before using
|
|
/// the geometry shader features. If it returns `false`, then
|
|
/// any attempt to use `sf::Shader` geometry shader features will fail.
|
|
///
|
|
/// This function can only return `true` if isAvailable() would also
|
|
/// return `true`, since shaders in general have to be supported in
|
|
/// order for geometry shaders to be supported as well.
|
|
///
|
|
/// Note: The first call to this function, whether by your
|
|
/// code or SFML will result in a context switch.
|
|
///
|
|
/// \return `true` if geometry shaders are supported, `false` otherwise
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
[[nodiscard]] static bool isGeometryAvailable();
|
|
|
|
private:
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Compile the shader(s) and create the program
|
|
///
|
|
/// If one of the arguments is a null pointer, the corresponding shader
|
|
/// is not created.
|
|
///
|
|
/// \param vertexShaderCode Source code of the vertex shader
|
|
/// \param geometryShaderCode Source code of the geometry shader
|
|
/// \param fragmentShaderCode Source code of the fragment shader
|
|
///
|
|
/// \return `true` on success, `false` if any error happened
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
[[nodiscard]] bool compile(std::string_view vertexShaderCode,
|
|
std::string_view geometryShaderCode,
|
|
std::string_view fragmentShaderCode);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Bind all the textures used by the shader
|
|
///
|
|
/// This function each texture to a different unit, and
|
|
/// updates the corresponding variables in the shader accordingly.
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
void bindTextures() const;
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief Get the location ID of a shader uniform
|
|
///
|
|
/// \param name Name of the uniform variable to search
|
|
///
|
|
/// \return Location ID of the uniform, or -1 if not found
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
int getUniformLocation(const std::string& name);
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \brief RAII object to save and restore the program
|
|
/// binding while uniforms are being set
|
|
///
|
|
/// Implementation is private in the .cpp file.
|
|
///
|
|
////////////////////////////////////////////////////////////
|
|
struct UniformBinder;
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// Types
|
|
////////////////////////////////////////////////////////////
|
|
using TextureTable = std::unordered_map<int, const Texture*>;
|
|
using UniformTable = std::unordered_map<std::string, int>;
|
|
|
|
////////////////////////////////////////////////////////////
|
|
// Member data
|
|
////////////////////////////////////////////////////////////
|
|
unsigned int m_shaderProgram{}; //!< OpenGL identifier for the program
|
|
int m_currentTexture{-1}; //!< Location of the current texture in the shader
|
|
TextureTable m_textures; //!< Texture variables in the shader, mapped to their location
|
|
UniformTable m_uniforms; //!< Parameters location cache
|
|
};
|
|
|
|
} // namespace sf
|
|
|
|
|
|
////////////////////////////////////////////////////////////
|
|
/// \class sf::Shader
|
|
/// \ingroup graphics
|
|
///
|
|
/// Shaders are programs written using a specific language,
|
|
/// executed directly by the graphics card and allowing
|
|
/// to apply real-time operations to the rendered entities.
|
|
///
|
|
/// There are three kinds of shaders:
|
|
/// \li %Vertex shaders, that process vertices
|
|
/// \li Geometry shaders, that process primitives
|
|
/// \li Fragment (pixel) shaders, that process pixels
|
|
///
|
|
/// A `sf::Shader` can be composed of either a vertex shader
|
|
/// alone, a geometry shader alone, a fragment shader alone,
|
|
/// or any combination of them. (see the variants of the
|
|
/// load functions).
|
|
///
|
|
/// Shaders are written in GLSL, which is a C-like
|
|
/// language dedicated to OpenGL shaders. You'll probably
|
|
/// need to learn its basics before writing your own shaders
|
|
/// for SFML.
|
|
///
|
|
/// Like any C/C++ program, a GLSL shader has its own variables
|
|
/// called _uniforms_ that you can set from your C++ application.
|
|
/// `sf::Shader` handles different types of uniforms:
|
|
/// \li scalars: \p float, \p int, \p bool
|
|
/// \li vectors (2, 3 or 4 components)
|
|
/// \li matrices (3x3 or 4x4)
|
|
/// \li samplers (textures)
|
|
///
|
|
/// Some SFML-specific types can be converted:
|
|
/// \li `sf::Color` as a 4D vector (\p vec4)
|
|
/// \li `sf::Transform` as matrices (\p mat3 or \p mat4)
|
|
///
|
|
/// Every uniform variable in a shader can be set through one of the
|
|
/// `setUniform()` or `setUniformArray()` overloads. For example, if you
|
|
/// have a shader with the following uniforms:
|
|
/// \code
|
|
/// uniform float offset;
|
|
/// uniform vec3 point;
|
|
/// uniform vec4 color;
|
|
/// uniform mat4 matrix;
|
|
/// uniform sampler2D overlay;
|
|
/// uniform sampler2D current;
|
|
/// \endcode
|
|
/// You can set their values from C++ code as follows, using the types
|
|
/// defined in the `sf::Glsl` namespace:
|
|
/// \code
|
|
/// shader.setUniform("offset", 2.f);
|
|
/// shader.setUniform("point", sf::Vector3f(0.5f, 0.8f, 0.3f));
|
|
/// shader.setUniform("color", sf::Glsl::Vec4(color)); // color is a sf::Color
|
|
/// shader.setUniform("matrix", sf::Glsl::Mat4(transform)); // transform is a sf::Transform
|
|
/// shader.setUniform("overlay", texture); // texture is a sf::Texture
|
|
/// shader.setUniform("current", sf::Shader::CurrentTexture);
|
|
/// \endcode
|
|
///
|
|
/// The special `Shader::CurrentTexture` argument maps the
|
|
/// given \p sampler2D uniform to the current texture of the
|
|
/// object being drawn (which cannot be known in advance).
|
|
///
|
|
/// To apply a shader to a drawable, you must pass it as an
|
|
/// additional parameter to the `RenderWindow::draw` function:
|
|
/// \code
|
|
/// window.draw(sprite, &shader);
|
|
/// \endcode
|
|
///
|
|
/// ... which is in fact just a shortcut for this:
|
|
/// \code
|
|
/// sf::RenderStates states;
|
|
/// states.shader = &shader;
|
|
/// window.draw(sprite, states);
|
|
/// \endcode
|
|
///
|
|
/// In the code above we pass a pointer to the shader, because it may
|
|
/// be null (which means "no shader").
|
|
///
|
|
/// Shaders can be used on any drawable, but some combinations are
|
|
/// not interesting. For example, using a vertex shader on a `sf::Sprite`
|
|
/// is limited because there are only 4 vertices, the sprite would
|
|
/// have to be subdivided in order to apply wave effects.
|
|
/// Another bad example is a fragment shader with `sf::Text`: the texture
|
|
/// of the text is not the actual text that you see on screen, it is
|
|
/// a big texture containing all the characters of the font in an
|
|
/// arbitrary order; thus, texture lookups on pixels other than the
|
|
/// current one may not give you the expected result.
|
|
///
|
|
/// Shaders can also be used to apply global post-effects to the
|
|
/// current contents of the target.
|
|
/// This can be done in two different ways:
|
|
/// \li draw everything to a `sf::RenderTexture`, then draw it to
|
|
/// the main target using the shader
|
|
/// \li draw everything directly to the main target, then use
|
|
/// `sf::Texture::update(Window&)` to copy its contents to a texture
|
|
/// and draw it to the main target using the shader
|
|
///
|
|
/// The first technique is more optimized because it doesn't involve
|
|
/// retrieving the target's pixels to system memory, but the
|
|
/// second one doesn't impact the rendering process and can be
|
|
/// easily inserted anywhere without impacting all the code.
|
|
///
|
|
/// Like `sf::Texture` that can be used as a raw OpenGL texture,
|
|
/// `sf::Shader` can also be used directly as a raw shader for
|
|
/// custom OpenGL geometry.
|
|
/// \code
|
|
/// sf::Shader::bind(&shader);
|
|
/// ... render OpenGL geometry ...
|
|
/// sf::Shader::bind(nullptr);
|
|
/// \endcode
|
|
///
|
|
/// \see `sf::Glsl`
|
|
///
|
|
////////////////////////////////////////////////////////////
|